首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In short-season soybean production areas, low soil temperature is the major factor limiting plant growth and yield. The decreases in soybean yield at low temperatures are mainly due to nitrogen limitation. Genistein, the most effective plant-to-bacterium signal in the soybean (Glycine max (L.) Merr.) nitrogen fixation symbiosis, was used to pretreat Bradyrhizobium japonicum. We have previously reported that this increased soybean nodulation and nitrogen fixation in growth chamber studies. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein, prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean grain yield and protein yield in short season areas. The results of these experiments indicated that genistein-preincubated bradyrhizobia increased the grain yield and protein yield of AC Bravor, the later maturing of the two cultivars tested. Genistein without B. japonicum, applied onto seeds in the furrow at the time of planting also increased both grain and protein yield by stimulation of native soil B. japonicum. Interactions existed between genistein application and soybean cultivars, and indicated that the cultivar with the greatest yield potential responded more to genistein addition.  相似文献   

2.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):237-244
Genistein is the major root produced isoflavonoid inducer of nod genes in the symbiosis between B. japonicum and soybean plants. Reduction in the isoflavonoid content of the host plants has recently been suggested as a possible explanation for the inhibition of mineral nitrogen (N) on the establishment of the symbiosis. In order to determine whether genistein addition could overcome this inhibition, we incubated B. japonicum cells (strain 532C) with genistein. Mineral N (in the form of NH4NO3) was applied at 0, 20 and 100 kg ha-1. The experiments were conducted on both a sandy-loam soil and a clay-loam soil. Preincubation of B. japonicum cells with genistein increased soybean nodule number and nodule weight, especially in the low-N-containing sandy-loam soil and the low N fertilizer treatment. Plant growth and yield were less affected by genistein preincubation treatments than nitrogen assimilation. Total plant nitrogen content was increased by the two genistein preincubation treatments at the early flowering stage. At maturity, shoot and total plant nitrogen contents were increased by the 40 μM genistein preincubation treatment at the sandy-loam soil site. Total nitrogen contents were increased by the 20 μM genistein preincubation treatment only at the 0 and 20 kg ha-1 nitrate levels in clay-loam soil. Forty μM genistein preincubation treatment increased soybean yield on the sandy-loam soil. There was no difference among treatments for 100-seed weight. The results suggest that preincubation of B. japonicum cells with genistein could improve soybean nodulation and nitrogen fixation, and at least partially overcome the inhibition of mineral nitrogen on soybean nodulation and nitrogen fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Soybeans (Glycine max (L.) Merr.) have a high N requirement which is fulfilled by soil N uptake and N2-fixation. This study was concerned with the effects of past yield selection on N2-fixation in soybeans.The soybean cultivars, Lincoln, Shelby, and Williams, which represent successive improvements in the Lincoln germplasm, and a non-nodulating control were planted in a soil containing15N labelled organic matter. Two replications occurred on soil previously cropped to alfalfa and two on soil previously cropped to soybeans. Plants were harvested at five growth stages and leaf area, plant weight, total N, and atom percent15N were determined. Mature grain was harvested and yield components were also determined, as well as the total N and15N content.Cultivar differences in total dry matter were only evident at physiological maturity, when Williams contained the greatest dry matter. Williams exhibited the longest period of seed formation and seed fill and also had the highest grain yield which resulted from a larger weight per seed.The N content of the cultivars did not vary until physiological maturity when Williams contained the highest percent N. The quantity of N fixed at physiological maturity was highest for Williams and lowest for Lincoln. Fixed N contained in the harvested grain was greater for Williams than for the other two cultivars. The fraction of the total plant N derived from fixation was not greatly affected by cultivar and all cultivars acquired an average of 50% of their total N through N2-fixation.Previous cropping history greatly affected the quantity of N fixed and the fraction of the total plant N derived from fixation. Soybeans following soybeans were more dependent upon N2-fixation than soybeans following alfalfa with the former deriving 65% of the total plant N from fixation and the latter only 32%. These soybean cultivars apparently utilized soil N first and then used N2-fixation to satisfy their N requirement.The past selection for higher yield has resulted in soybean cultivars with improved capacities to fix atmospheric N2 and an improved ability to take up available soil N.  相似文献   

4.
Summary Most soybean varieties fail to nodulate effectively in tropical soils unless inoculated with a competitive strain ofRhizobium japonicum. Developing countries in the tropics, with few exceptions, lack inoculant industries to produce and distribute viable inoculants to small farmers and extension programs to teach them to use inoculant. Several soybean genotypes have been identified that nodulate effectively with many strains of the cowpea inoculation group which is ubiquitous in tropical soils of Africa. Soybean genotypes that nodulate and grow well without inoculant application are called promiscuous. Methodologies for incorporation of the promiscuity character into high-yielding backgrounds are discussed.Supported in part by grant 05-0560 from United Nations Development Program to the International Institute of Tropical Agriculture.  相似文献   

5.
Summary Azospirillum was associated with nodules of soybean. In general, seed inoculation with a broth culture ofAzospirillum brasilense alone significantly increased nodulation and grain yield of soybean grown in pots in unsterilized soil with different levels of urea ranging from 0 to 80 kg N/ha. This trend was significantly reproducible in a second experiment when a carrier based inoculant of the bacterium was used for seed inoculation.Inoculation withRhizobium japonicum andA. brasilense in combination generally increased grain yield in both the experiments, although the data were not significant.  相似文献   

6.
BJ38 is a galactose/lactose-specific lectin (M r 38000) found at one pole ofBradyrhizobium japonicum. It has been implicated in mediating the adhesion of the bacteria to soybean roots, leading to the establishment of a nitrogen-fixing symbiosis. When the ligand lactose is added to cultures of the bacteria for at least 1 h prior to harvesting the cells for BJ38 isolation, the yield of the protein was found to be elevated in a dose-dependent fashion. Half maximal stimulation was observed at 50 µm; the effect was saturated at 1mm, where a 10-fold higher yield of BJ38 was obtained. Saccharides with a lower affinity for BJ38 than lactose yielded a correspondingly smaller induction effect when compared at a concentration of 1mm. The higher level of BJ38 induced by lactose is also manifested by an elevated amount of BJ38 detectable at the cell surface and by a higher number ofB. japonicum cells adsorbed onto soybean cells. Surprisingly, the induction of BJ38 expression seen with lactose was also observed with certain, but not all, flavonoids that induce thenod genes of the bacteria; genistein mimicked the induction observed with lactose, whereas luteolin failed to stimulate BJ38 production.  相似文献   

7.
Bradyrhizobium japonicum strain TA-11NOD+, with altered indole biosynthesis, exhibited enhanced nodulation and nitrogen fixation on soybean in previous greenhouse studies. In this study, field experiments were conducted at Upper Marlboro, Maryland, in the summers of 1988 and 1993. In 1988, the site used was essentially free of soybean-nodulating bacteria and seed yield in plots inoculated with either I-110ARS or TA-11NOD+ was significantly higher by 12 or 20%, respectively, than that of the uninoculated controls. The 1993 site had an indigenous soil population (about 104 cells g-1) of symbiotically ineffective soybean-nodulating bacteria. Nevertheless, six-week-old Morgan soybean plants inoculated with strain TA-11NOD+ had 44% more nodules and exhibited 50% more nitrogen fixation by acetylene reduction when compared with plants that received the parental strain I-110ARS. Nodule occupancy, as determined using genetic markers for rifampicin and streptomycin resistance, was significantly higher for strain TA-11NOD+ than for strain I-110ARS. Overall, for the two years and the two soybean genotypes, the yield obtained with TA-11NOD+ was 6% higher than that obtained with I-110ARS. Competition experiments were conducted in the greenhouse and strain TA-11NOD+ was significantly more competitive than strain I-110ARS in competition with strains USDA 6 or USDA 438.  相似文献   

8.
The growth of mustard was increased significantly when treated with up to 80 kg N ha–1 (N80). Spraying with (2-chloroethyl) trimethylammoniumchloride (chlormequat chloride) increased seed yield and seed protein content. Spraying nitrogen fertilized plots with chlormequat chloride, increased leaf area, leaf area ratio, leaf area duration, number of siliquae plant–1, number of seeds siliqua–1 and length of siliqua. Reducing, non-reducing and total sugars in the leaves at 80 days after sowing were also affected significantly. Chlorophyll a, b and total chlorophyll were little affected. The number of siliquae plant–1 was highly correlated with seed yield in both the seasons of experimentation. The correlation coefficient value () was 0.586 in 1982/83 and 0.912 in 1983/84.The total accumulation of nutrients, i.e. nitrogen, phosphorus and potassium in seed and straw was significantly affected by N80 × chlormequat chloride interaction.  相似文献   

9.
The importance of soybean as a source of oil and protein, and its ability to grow symbiotically on low-N soils, point to its continued status as the most valuable grain legume in the world. With limited new land on which to expand, and emphasis on sustainable systems, increases in soybean production will come mostly from increased yield per unit area. Improvements in biological nitrogen fixation can help achieve increased soybean production, and this chapter discusses research and production strategies for such improvement.The soybean-Bradyrhizobium symbiosis can fix about 300 kg N ha-1 under good conditions. The factors which control the amount of N fixed include available soil N, genetic determinants of compatibility in both symbiotic partners and lack of other yield-limiting factors. Response to inoculation is controlled by the level of indigenous, competing bradyrhizobia, the N demand and yield potential of the host, and N availability in the soil.Research efforts to improve BNF are being applied to both microbe and soybean. While selection continues for effective, naturally occurring bradyrhizobia for inoculants and the use of improved inoculation techniques, genetic research on bradyrhizobia to improve effectiveness and competitiveness is advancing. Selection, mutagenesis and breeding of the host have focused on supernodulation, restricted nodulation of indigenous B. japonicum, and promiscuous nodulation with strains of bradyrhizobia from the cowpea cross-inoculation group. The research from the host side appears closer to being ready for practical use in the field.Existing knowledge and technology still has much to offer in improving biological nitrogen fixation in soybean. The use of high-quality inoculants, and education about their benefits and use can still make a significant contribution in many countries. The importance of using the best adapted soybean genotype with a fully compatible inoculant cannot be overlooked, and we need to address other crop management factors which influence yield potential and N demand, indirectly influencing nitrogen fixation. The implementation of proven approaches for improving nitrogen fixation in existing soybean production demands equal attention as received by research endeavours to make future improvements.  相似文献   

10.
Hemagglutinating proteins were isolated by affinity chromatography from seeds of each of five cultivars of soybeans (Clycine max (L.) Merr.) previously reported to lack detectable lectin (S.P. Pull et al., 1978; Science 200, 1277). Quantities were between 1,000 and 10,000 times less than that found in the seeds of the reference cultivar, Chippewa. The sensitivity of the hemagglutinating assay was 0.05 g ml-1. Hemagglutinating activity was demonstrated in affinity-purified fractions from bulk seeds and seeds from individual plants in two cultivars, 30–70% ammonium-sulfate-precipitable fractions of seeds from individual plants of all five cultivars, and in whole crude extracts of individual seeds from each cultivar. In all instances, hemagglutinating activity was inhibited by galactose, anti-soybean agglutinin (SBA), and lectin-binding polysaccharide produced by Rhizobium japonicum. Affinity-purified lectin from seeds of a single Columbia plant was labeled with fluorescein isothiocyanate (FITC) and observed by fluorescence microscopy to bind to R. japonicum cells with specificity, intensity and localization indistinguishable from FITC-SBA. Lectins from distinguishable from FITC-SBA. Lectins from three cultivars in sufficiently high concentration for study had molecular properties very similar to Chippewa SBA.Abbreviations FITC fluorescein isothiocyanate - IgG immunoglobulin G - SBA soybean agglutinin  相似文献   

11.
The effects of inoculating soil with a water suspension of Bradyrhizobium japonicum (i) at seeding, (ii) 7, or (iii) 14 days after planting (DAP), (iv) seed slurry inoculation and (v) seed slurry supplemented with postemergence inoculation of a water suspension of Bradyrhizobium at 7 or (vi) 14 DAP, on nodulation, N2 fixation and yield of soybean (Glycine max. [L.] Merrill) were compared in the greenhouse. The 15N isotope dilution technique was used to quantify N2 fixed at flowering, early pod filling and physiological maturity stages (36, 52 and 70 DAP, respectively). On average, the water suspension inoculation formed the greatest number of nodules, and seed plus postemergence inoculation formed slightly more nodules than the seed-only inoculated plants (27, 19 and 12 nodules/plant respectively at physiological maturity). Seed slurry inoculation followed by postemergence inoculation at 14 DAP gave the highest nodule weight, with the plants fixing significantly more (P<0.05) N2 (125 mg N plant−1 or 56% N) than any other treatment (mean, 75 mg plant−1 or 35% N). However, the higher N2 fixation was not translated into higher N or dry matter yields. Estimates of N2 fixed by the ostemergence Bradyrhizobium inoculations as well as plant yield were not significantly different from those of the seed slurry inoculation. Thus, delaying inoculation (e.g., by two weeks as in this study) did not reduce the symbiotic ability of soybean plants.  相似文献   

12.
Zhang  Feng  Smith  Donald L. 《Plant and Soil》1997,192(1):141-151
In the soybean (Glycine max. (L.) Merr)– Bradyrhizobium japonicum symbiosis, suboptimal root zone temperatures (RZTs) slow nodule development by disruption of the interorganismal signal exchange between the host plant and bradyrhizobia. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean nodulation, N fixation, and total N yield. The results of these experiments indicated that genistein application increased nodule number and nodule dry matter per plant and hastened the onset of N fixation during the early portion of the soybean growing season, when the soils were still cool. Because these variables were improved, total fixed. N, fixed N as a percentage of total plant N, and N yield increased due to genistein application. The interaction between genistein application and soybean cultivars indicated that genistein application was more effective on N-stressed plants.  相似文献   

13.
Summary Electroporation offers a fast, efficient and reproducible way to introduce DNA into bacteria. We have successfully used this technique to transform two commercially important strains of Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont. Initially, electroporation conditions were optimized using plasmid DNA which had been prepared from the same B. japonicum strain into which the{imDNA was to b}e transformed. Efficiencies of 105-106 transformants/g DNA were obtained for strains USDA 110 and 61A152 with ready-to-use frozen cells. Successful electroporation of B. japonicum with plasmid DNA prepared from Escherichia coli varied with the E. coli strain from which the plasmid was purified. The highest transformation efficiencies (104 transformants/g DNA) were obtained using DNA prepared from a dcm dam strain of E. coli. This suggests that routine isolation of DNA from an E. coli strain incapable of DNA modification should help in increasing transformation efficiencies for other strains of bacteria where DNA restriction appears to be a significant obstacle to successful transformation. We have also monitored the rate of spontaneous mutation in electroporated cells and saw no significant difference in the frequency of streptomycin resistance for electroporated cells compared to control cells.  相似文献   

14.
A field experiment was conducted to investigate if carbon isotope (13C) discrimination () measured at the vegetative stage of spring wheat (Triticum turgidum L. var. durum) is related with the yield and water use efficiency (WUE) at ripening. A line source sprinkler irrigation system exposed the wheat genotypes to different watering regimes, from rainfed to full irrigation and thereby increased the range in yield and WUE attainable in the four genotypes studied. The results indicated that values measured at the late stem elongation stage 60 days after planting (DAP), showed strong positive correlation with total dry matter yield (r=0.732***), and a highly significant negative correlation with WUE (r=–0.755***) measured at ripening 105 DAP. The data suggest that the imprints of measured at vegetative growth stage persists throughout the entire growth period, until maturity. Subject to confirmation from additional studies in other crops and locations, early measurements of may prove a useful tool for rapid and early screening of cultivars, for high yield and high WUE.  相似文献   

15.
Azospirillum sp. is one of the most studied genera of plant growth-promoting rhizobacteria (PGPR). The ability of Azospirillum sp. to promote plant growth has been associated with its ability to produce several phytohormones, such as auxins, gibberellins and cytokinins, but mainly indole-3-acetic acid (IAA). It has been propoosed that the production of IAA explains the positive effects of co-inoculation with Azospirillum sp. on the rhizobia-legume symbiosis. In this study, we constructed an IAA-deficient mutant of A. brasilense Az39 (ipdC ? ) by using a restriction-free cloning method. We inoculated soybean seeds with 1·106 cfu·seed?1 of Bradyrhizobium japonicum E109 and co-inoculating leaves at the V3 stage with 1·108 cfu.plant?1 of A. brasilense Az39 wt or ipdC ? or inoculated leaves with 20 μg.plant?1 synthetic IAA. The results confirmed soybean growth promotion as there was increased total plant and root length, aerial and root dry weight, number of nodules on the primary root, and an increase in the symbiosis established with B. japonicum E109. Nodule weight also increased after foliar co-inoculation with the IAA- producer A. brasilense Az39. The exogenous application of IAA decreased aerial and root length, as well as the number of nodules on primary roots in comparison with the Az39 wt strain. These results allow us to propose a biological model of response to foliar co-inoculation of soybean with IAA-producing rhizobacteria. This model clearly shows that both the presence of microorganism as part of the colonization process and the production of IAA in situ are co-responsible, via plant signaling molecules, for the positive effects on plant growth and symbiosis establishment.  相似文献   

16.
A non-essential DNA region carrying two different repeated sequences (RS3 and RS9) adjacent to a nitrogen fixation (nif) gene cluster has been identified previously in Bradyrhizobium japonicum strain 110. In closely related B. japonicum strains a similar genomic arrangement was found. We constructed a mobilizable plasmid vector carrying RS3 and RS9, and a kanamycin resistance cassette (nptII gene) plus suitable cloning sites inserted between the two repeated sequences. Using this vector (pRJ1035), stable integration of a lacZ gene fusion into the B. japonicum genomic RS region was achieved. The resulting strain yielded more than 10-fold higher -galactosidase activity in soybean root nodules as compared to a B. japonicum strain carrying the same lacZ fusion on a pRK290-based plasmid.  相似文献   

17.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):231-236
In the soybean-B. japonicum symbiosis, genistein has been identified as one of the major compounds in soybean seed and root exudates responsible for inducing expression of the B. japonicum nodYABC operon. In this study, we have tested the possibility that genistein treatment prior to inoculation can increase the competitiveness of the treated B. japonicum strain under both greenhouse and field conditions. Two mutants of the two B. japonicum strains each with a different antibiotic resistant marker were selected. They were tested with one or the other treated with genistein. The results showed genistein treated mutants had higher levels of nodule occupancy than the untreated mutant or parent strain under greenhouse conditions. Mutants from 532C had higher nodule occupancies than mutants from USDA110, especially at 15 °C. In the more complex field environment, genistein treated mutants formed fewer nodules than the untreated mutants. The contradictory results of strain competitiveness for greenhouse and field experiments are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Genetic distance among canola cultivars was estimated through multivariate analysis. Thirty cultivars from various sources were analyzed and clustered based upon five morphological characteristics and yield components-crown diameter, number of branches plant-1, number of pods plant-1, number of seeds pod-1 and yield plant-1 -and placed in three distinct clusters. Two cultivars from each cluster were selected as parents and 15 partial-diallel inter- and intra-cluster crosses were made between the six selected parents and evaluated at two locations in Michigan in 1990/1991. The association between genetic distance and mid-parent heterosis was investigated. The correlation between genetic distance and heterosis was positive and highly significant for seed yield, number of pods plant-1, and number of seeds pod-1. Clustering, based on yield and yield-component traits, demonstrated that inter-cluster heterosis was greater than intra-cluster heterosis in the majority of cases.  相似文献   

19.
Genistein, a major root-secreted isoflavone of soybean (Glycine max (L.) Merr), is critical for the legume-Bradyrhizobium symbiosis as it induces several bacterial nod-gene systems. An experiment with soybean grown under salt stress was conducted to evaluate the effect of exogenous genistein addition to the Bradyrhizobium culture medium on subsequent nodulation, nitrogen fixation and selected plant physiological attributes. Five day-old plants (in pots) were inoculated with a liquid B. japonicum broth culture and irrigated with B&D solution containing either 0, 25, 50 and 100 mM NaCl. Four weeks after inoculation, maximum photochemical efficiency of PSII (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were measured. Number of nodules per plant and apparent nitrogen fixation (as acetylene reduction activity) were determined. Salt stress decreased nodule number/plant and nitrogenase activity/plant and induced large changes of both photosynthetic parameters and antioxidant enzyme activity, compared to the control, genistein reversed the effect in each level of salinity tested. Moreover, pre-treatment of the microsymbiont with genistein enhanced maximum photochemical efficiency, photosynthetic rate, stomatal conductance and transpiration rate, while the enzymatic activities of catalase, superoxide dismutase and peroxidase in leaves and roots were not affected. It can be concluded that preincubation of the B. japonicum inoculant with genistein probably contributed towards growth in soybean via enhancement of nodulation and nitrogen fixation under both normal and salt stress conditions.  相似文献   

20.
A T-cell receptor alpha chain locus (Tcra) congenic mouse is described. The Tcra a haplotype of BALB/c (donor strain) was bred on to B10.D2 (background strain, Tcra b haplotype) by using a Bgl I Tcra-C restriction fragment length polymorphism. Tcra a/b heterozygous offspring from the eleventh backross generation were brother-sister mated to obtain Tcra-C a homozygous animals. The resulting congenic line, B10.D2.C-Tcra a /Bo carries a recombination between the Tcra and the hr loci; thus, the transferred differential segment is the centromeric 18–27 cM of the BALB/c chromosome 14. Analysis with a multitude of Tcra-V and Tcrd-V probes demonstrates that the complete Tcra a haplotype is contained within this differential segment. Lymph node T cells of BALB/c (Tcra a ) B10.D2 (Tcra b ) and B10.D2.C-Tcra a were stained with anti-V8 (KT50, KT65), anti-V3.2 (RR3-16) and anti-V11.1 and 2 (RR8-1) monoclonal antibodies. We find that the frequencies of V epitope expression are highly Tcra haplotype-dependent even though an influence of background genes is also observed. Thus, Tcra-V germline differences may possibly influence the T cell repertoire, in addition to the already well known positive and negative thymic selections. Tcra haplotype does not influence the frequencies of V utilization. However, BALB/c mice have fewer V11+ T cells than B10.D2 and B10.D2-Tcra a , therefore, the BALB/c genome must harbor a V11 deleting gene(s) in addition to those described so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号