首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

2.
Reaction of [Cu2L](ClO4)4 with CH3CN in acetonitrile, and Him in DMF gave cyanide and imidazolate bridged macrocyclic dinuclear copper (II) complexes with the formula [Cu2L(CN)](ClO4)3 (1) and [Cu2L(im)](ClO4)2 · 0.7Br · 0.3Cl, (2), respectively (L = N[(CH2)2NHCH2(C6H4-p)CH2NH(CH2)2]3N). In 2, each Cu(II) atom is coordinated with four macrocyclic nitrogen atoms and one imidazolate N atom, forming a slightly distorted square pyramidal geometry. Magnetic susceptibility measurements of 1 and 2 show that the two Cu(II) atoms of the binuclear unit are antiferromagnetically coupled with g = 2.148, J = −86.09 cm−1 for 1, and g = 2.047, J = −38.20 cm−1 for 2. The correlation between the structures and the J values is discussed.  相似文献   

3.
The Schiff base ligands 2-(2,6-diisopropylphenyliminomethyl)phenol H(L1), 5-diethylamino-2-(2,6-diisopropylphenyliminomethyl)phenol H(L2), 2,4-di-tert-butyl-6-(2,6-diisopropylphenyliminomethyl)phenol H(L3), 3-(2,6-diisopropylphenyliminomethyl)naphthalen-2-ol H(L4) and 4-(2,6-diisopropylphenyliminomethyl)-5-hydroxymethyl-2-methylpyridin-3-ol H(L5) have been synthesized by the condensation, respectively, of salicylaldehyde, 4-(diethylamino)salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, 2-hydroxy-1-napthaldehyde and pyridoxal with 2,6-diisopropylaniline. The copper(II) bis-ligand complexes [Cu(L1)2] 1, [Cu(L2)2] 2, [Cu(L3)2] 3, [Cu(L4)2] 4 and [Cu(L5)2] · CH3OH 5 of these ligands have been isolated and characterized. The X-ray crystal structures of two of the complexes [Cu(L1)2] 1 and [Cu(L5)2] · CH3OH 5 have been successfully determined, and the centrosymmetric complexes possess a CuN2O2 chromophore with square planar coordination geometry. The frozen solution EPR spectra of the complexes reveal a square-based CuN2O2 chromophore, and the values of g and g/A index reveal enhanced electron delocalization by incorporating the strongly electron-releasing -NEt2 group (2) and fusing a benzene ring on sal-ring (4). The Cu(II)/Cu(I) redox potentials of the Cu(II) complexes reveal that the incorporation of electron-releasing -NEt2 group and fusion of a benzene ring lead to enhanced stabilization of Cu(II) oxidation state supporting the EPR spectral results. The hydrogen bonding interactions between the two molecules present in the unit cell of 5a generate an interesting two-dimensional hydrogen-bonded network topology.  相似文献   

4.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

5.
Five-coordinate thiolato complexes, [L1M(SMeIm)] (M = Co and Ni) (L1 = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate anion and HSMeIm = 2-mercapto-1-methylimidazole), were synthesized. These complexes were compared with the corresponding Cu(II) and Zn(II) complexes with the same ligands and were also compared with the related four-coordinate complexes [L1M(SC6F5)] (HSC6F5 = pentafluorobenzenthiol). All the complexes were characterized by X-ray crystallography and UV-Vis absorption, IR, 1H NMR, and other spectroscopic techniques. All five-coordinate thiolato complexes, [L1M(SMeIm)] (M = Co, Ni, and Cu), form a distorted square pyramidal structure with a high spin state, and only [L1Zn(SMeIm)] takes a four-coordinate structure with a distorted tetrahedral configuration. The N21-M-S bond angles of the obtained five-coordinate complexes were proportional to the corresponding d value, which comes from between the equatorial basal plane with N4S ligand donor sets and metal ion. These observations and M-S bond distances affect on UV-Vis and far-IR spectral behavior.  相似文献   

6.
A molecular rectangle [Cu{CuL1(NO3)}(H2O)(NO3)]2 (1) and two infinite molecular rectangle strands {[Cu{CuL1(NO3)}2] · 2H2O} (2) and [Cu{CuL2(ClO4)}2] (3) were prepared by reaction of “naked” Cu(II) ions with macrocyclic complex ligands CuL1 for 1 and 2 and CuL2 for 3 in metal-to-ligand molar ratios of 1:1, 1:2 and 1:2, respectively. L1 and L2 denote the dianions of diethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate and diethyl 5,6,7,8,15,16-hexahydro-15-methyl-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate, respectively. The structures of 1-3 were determined by X-ray single-crystal analyses. CuL1 in 1 and 2 and CuL2 in 3 act as angular linkers with a monodentate coordination top and a bidentate one between two Cu(II) nodes to enclose the molecular rectangle of 1 and the rectangular subunits of 2 and 3. The angular shape, the monodentate top plus bidentate top coordination mode and the self-complementarity for π?π interactions of the macrocyclic complex linkers, the ratio between the reactants and the octahedral coordination geometry of the naked Cu(II) ions jointly determined the interesting structures of metallocyclophane 1 and 1D double chain coordination polymers 2 and 3. The cavities of the rectangular molecules of 1 are arranged into infinite strands so that parallel channels occur in the crystal. The molecules of 2 and 3 all pack parallel in the crystals.  相似文献   

7.
New copper(II) clofibriates (clof, {2-(4-chlorophenoxy)-2-methylpropionic or 2-(4-chlorophenoxy)isobutyric acid}) of composition Cu(clof)2L2 (where L=2-pyridylmethanol (2-pymeth) (1), N-methylnicotinamide (Menia) (4), N,N-diethylnicotinamide (Et2nia) (5), isonicotinamide (isonia) (7) or methyl-3-pyridylcarbamate (mpc) (8)), [Cu(clof)2(4-pymeth)2(H2O)] · 2H2O (4-pymeth=4-pyridylmethanol) (2 · 2H2O) and Cu(clof)2L (where L=4-pymeth (3) or Et2nia (6)) have been prepared and spectroscopically characterized. All the Cu(clof)2L2 compounds seem to possess distorted octahedral copper(II) stereochemistry with differing tetragonal distortions. An X-ray analysis of 1 was carried out and it featured a tetragonal-bipyramidal geometry around the copper(II) atom. X-ray analysis of 2 · 2H2O featured a square-pyramidal geometry around copper(II) atom. Both the Cu(clof)2L compounds seem to consist of a binuclear unit of tetracarboxylate type bridging. An X-ray analysis of 6 revealed typical binuclear paddle-wheel type structure, consisting of two copper(II) atoms in square-pyramidal geometry bridged by four carboxylate anions in the xy-plane. All complexes under study were characterized by EPR and electronic spectroscopy. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

8.
Two nickel (II) complexes with the formula [NiL(H2O)2] · 6H2O (1 · 6H2O) and [NiH2L(BDC)]n (2), where L = 3,10-bis(3-propylcarboxyl)-1,3,5,8,10,12-hexaazacyclo-tetradecane, BDC = trans-butene dicarboxylate, have been synthesized and characterized by elemental analyses, IR spectra and single-crystal X-ray analyses. In 1, the Ni(II) ion is six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two water molecules in axial position. In 2, the structure is made up of one-dimensional chain of [NiH2L]2+ units with BDC2− anions, in which the Ni(II) ion is also six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two carboxylate oxygen atoms from the BDC2− group in axial position. In 2, the 1D chains are aligned in a parallel mode.  相似文献   

9.
The macrocyclic ligand, 1,4-bis((1-oxa-4,7,10-triazacyclododecan-7-yl)methyl)benzene (L1) is prepared. L1 binds two Zn(II) ions at neutral pH to form Zn2(L1) as studied by using pH-potentiometric titrations. Zn2(L1) binds two uridines at pH 7.0, I = 0.100 M (NaCl) and the mononuclear analog Zn(L2) (L2 = 1-oxa-4,7,10-triazacyclododecane) binds a single uridine; dissociation constants for both complexes are in the millimolar range. Both complexes promote the cleavage of a simple RNA analog lacking a nucleobase (HpPNP = 2-hydroxypropyl-4-nitrophenylphosphate), and a uridine containing RNA analog UpPNP (uridine-3′-4-nitrophenylphosphate). Plots of the first-order rate constant for cleavage of HpPNP as a function of Zn(L2) concentration from 0.5 mM to 20.0 mM are linear, consistent with weak complexation to substrate Kd > 20 mM. In contrast, first-order rate constants for cleavage of UpPNP by Zn(L2) or Zn2(L1) over similar concentration ranges exhibit a downward curvature, consistent with the formation of a complex between catalyst and UpPNP. Comparison of second-order rate constants (k2 = kcat/Kd) shows that the dinuclear complex Zn2(L1) is a better catalyst than Zn(L2) for both HpPNP and UpPNP cleavage.  相似文献   

10.
A new tris(pyridylhydrazonyl)methane ligand, HC[N(Me)NC(H)Py]3 (L2) (Py = pyridyl), has been synthesized. The latter is accessible from triethyl orthoformate and 2-(2-methylhydrazono)methylpyridine in 63% isolated yield. We have investigated its coordination chemistry towards copper ions and compared the results with those obtained for the recently developed multifunctional ligand, (S)P[N(Me)NC(H)Py]3 (L1). The copper(II) complexes [Cu(L1)](OTf)2 (3) and [Cu(L2)](OTf)2 (4) (OTf = triflate, (O3SCF3)) are mononuclear with the cations coordinated by three imino and three pyridine nitrogen atoms. Almost axial symmetric EPR spectra have been obtained in frozen solutions at X-band. The spectra show resolved hyperfine couplings to the copper nuclei on one of the three g values. X-ray structural analyses revealed in each case a cis bond distortion and a trigonal twist due to Jahn-Teller effects. The CuII/CuI reduction potentials of 3 and 4 were shown to be remarkably low ( = −0.11 V for 3;  = −0.34 V for 4), especially for 3 consisting of the phosphorus supported ligand L1. The corresponding copper(I) complexes [Cu(L1)](OTf) (5) and [Cu(L2)](OTf) (6) are accessible by reduction using decamethyl ferrocene. Both copper(I) complexes have been characterized in detail including X-ray structure analyses.  相似文献   

11.
Herein, we describe the synthesis of N,N′,S donor ligands 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-3-(methythio)propyl)-4-methoxy-3,5-dimethylpyridine (L1) and 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-2-(methythio)ethyl)-4-methoxy-3,5-dimethylpyridine (L2). Cu(I) complexes were prepared by reacting L1 or L2 with [Cu(CH3CN)4]BF4 or CuCl. The coordination behavior of the thioether arm of the ligands was found to determine the nuclearity of the resulting complexes, in which [Cu(L1)PPh3]BF4 (1) is polynuclear, [Cu(L2)PPh3]BF4 (2) is mononuclear, while [Cu(L1)]2(BF4)2 (3), [Cu(L2)CH3CN]2(BF4)2 (4), and [Cu(L1)Cl]2 (5) are dinuclear. In the dimeric complex [Cu(L2)Cl]2 (6), the sulfur atoms are not metal-bound. Rather, the two bridging chloride ions link the two copper centers. Compounds 4-6 are luminescent in the solid state, and exhibit emission bands centered at 490 nm (4), 544 nm (5), and 562 nm (6), respectively. Their excitation spectra display bands at 280 nm and 380 nm. According to DFT calculations, the HOMO is distributed partially over the metal centers and partially over the chloride anions (5 and 6) or the sulfur atoms (4) of the ligands, while the LUMO is a π∗ antibonding pyridine orbital. This suggests that the emission properties are derived from metal-to-ligand charge-transfer (MLCT), halide-to-ligand charge-transfer (XLCT), and ligand-to-ligand charge-transfer (LLCT) excited states.  相似文献   

12.
Self-assembling [Fe(CN)5(NO)]2− and [M(L)]2+ (M = Ni, Cu; L = macrocycles) led to one-dimensional coordination polymers, [Ni(L1)][Fe(CN)5(NO)] · 2H2O (1) with parallel chains and [Cu(L2)][Fe(CN)5(NO)] · 3H2O (2) exhibiting a slanted chain structure. Compound 1 contains a planar macrocycle L1 coordinated to a slightly distorted octahedral Ni(II) ion in which the planarity of L1 gives rise to piling up chains in parallel. In contrast, a more flexible macrocyclic ligand L2 in 2 that surrounds a Cu center with a tetragonal elongation has bulky cyclohexyl groups together with pendant methyl side groups. The presence of the methyl groups on L2 in a chain makes the cyclohexyl groups in an adjacent chain tilted against the CuN4 basal plane with the methyl groups, eventually resulting in the slanted chain structure. Magnetic data demonstrate that antiferromagnetic interactions (J ≈ −0.13 cm−1) are operating although the paramagnetic centers are linked by the long diamagnetic [Fe(CN)5(NO)]2− anion.  相似文献   

13.
Hydrothermal reaction of copper(II) chloride with 2-hydroxypyrimidine generated double salt of [Cu2Cl(μ4-pymo)] (1) (Hpymo = hydroxylpyrimidine) while hydrothermal treatment of CuCl2, NaN3 and acetonitrile resulted in double salt of [Cu2(mtta)Cl] (2) (Hmtta = 5-methyltetrazole) in which in situ [2 + 3] cycloaddition reactions of acetonitrile with azide formed mtta ligand. X-ray single crystal structural analyses revealed that 1 shows a two-dimensional layer formed by fusion of one-dimensional structural motifs. The two-dimensional layers in 1 are held together by C-H?Cl hydrogen bonds to form three-dimensional supramolecular array. Compound 2 has a three-dimensional framework constructed from ribbons and [Cu8Cl4]4+ units. Uncommon coordination modes of μ4-1,2κO:3κN:4κN′ pymo and μ4-Cl (Cl at the apex of a Cu4Cl square pyramid) in 1 and μ41111 mtta in 2 were also observed. The short Cu(I)?Cu(I) distances were found in 1 and 2, indicating the existence of Cu(I)?Cu(I) interactions.  相似文献   

14.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

15.
Two phenoxo bridged dinuclear Cu(II) complexes, [Cu2L2(NO2)2] (1) and [Cu2L2(NO3)2] (2) have been synthesized using the tridentate reduced Schiff-base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol (HL). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The structures of the two compounds are very similar having the same tridentate chelating ligand (L) and mono-dentate anionic ligand nitrite for 1 and nitrate for 2. In both complexes Cu(II) is penta-coordinated but the square pyramidal geometry of the copper ions is severely distorted (Addison parameter (τ) = 0.33) in 1 while the distortion is quite small (average τ = 0.11) in 2. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = −140.8 and −614.7 cm−1 for 1 and 2, respectively) show that the coupling is much stronger in 2.  相似文献   

16.
One monomeric neutral Cu(II) complex [(pmtpm)CuCl2] (1) is reported by Lindoy and Livingstone [8]. Two new complexes namely, μ-Cl bridged binuclear Cu(II) complex [{(pmtpm)Cu(Cl)}2 μ-Cl](ClO4) (2) and a bis μ-Cl bridged binuclear Cu(II) complex [{(pmtpm)Cu}2(μ-Cl)2](ClO4)2 (3) derived from a tridentate Schiff base ligand, 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine (pmtpm) were synthesized and characterized by various spectroscopic methods and by X-ray crystallography. (N2S)CuCl2 chromophore(s) of distorted square pyramidal coordination geometries around Cu(II) ion(s) have been observed for all the complexes 1-3. The equatorial sites of the square plane comprise two N and a thioether S donor atoms of the pmtpm ligand as well as one Cl ion (terminal in 1 and 2, and bridging in 3) while the remaining axial site is occupied by a terminal Cl ion (for 1) or a bridging Cl ion (for 2 and 3). The equatorial Cu-Cl distances are much shorter [1: 2.2511(4) Å, 2: 2.2307(12) Å, 3: 2.2513(12) Å] than the axial Cu-Cl distances [1: 2.4394(4) Å, 2: 2.5597(9) Å, 3: 2.7037(12) Å]. The correlation of an axial Cu-Cl bond elongation with a lower g|| value in the solid state EPR spectrum and a blue shifted ligand field transition in the solid and solution phase absorption spectrum has been observed.  相似文献   

17.
When the complexes [Cu(L1)(H2O)](ClO4)21, where L1 = 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane, and [Cu(L2)Cl2] 2, where L2 = 4-methyl-1-(quinol-2-ylmethyl)-1,4-diazacycloheptane are interacted with one/two equivalents of bis(p-nitrophenylphosphate, (p-NO2Ph)2PO2, BNP), no hydrolysis of BNP is observed. From the solution the adducts of copper(II) complexes [Cu2(L1)2((p-NO2Ph)2PO2)2]-(ClO4)23 and [Cu(L2)((p-NO2Ph)2PO2)2]·H2O 4 have been isolated and structurally characterised. The X-ray crystal structure of 3 contains two Cu(L1) units bridged by two BNP molecules. The Cu···Cu distance (5.1 Å) reveals no Cu-Cu interaction. On the other hand, the complex 4 is mononuclear with Cu(II) coordinated to the 3N ligand as well as BNP molecules through phosphate oxygen. The trigonality index (τ, 0.37) observed for 4 is high suggesting the presence of significant trigonal distortion in the coordination geometry around copper(II). The complexes are further characterized by spectral and electrochemical studies.  相似文献   

18.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

19.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

20.
Using the ligand 1,4,5-triazanaphthalene (abbreviated as tan) in combination with Cu(II) salts, three mononuclear compounds, Cu(tan)2Cl2 (1), Cu(tan)2Br2 (3), Cu(tan)2(NO3)2 (5) and three polynuclear compounds, [Cu(tan)Cl2]n (2), [Cu(tan)Br2]n (4), [Cu(tan)(NO3)2]n (6) have been synthesized and characterized by UV-Vis, EPR, FTIR and Far-FTIR spectroscopies. The crystal structures of compounds 1, 3, 5 and 6 are reported, as well as that of the dioxane adduct of compound 4, [Cu(tan)Br2(C4H8O2)](C4H8O2) (4A).The structure of (2) was solved by X-ray powder diffraction. The coordination geometry around the Cu(II) atoms is tetrahedral for (1) and (3), square-pyramidal for (4A) and distorted octahedral for (5) and (6). Magnetic susceptibility measurements on the polynuclear compounds revealed weak antiferromagnetic interactions between the Cu(II) atoms with interaction constants (J) of J = −9.1 and −10.5 cm−1, for 4 and 6, respectively. For compound 2 two options for possible interactions were considered, with interaction constants which vary for Jrung −22.0 to −13.5 cm−1 and Jrail −19.6 to −17.0 cm−1. These figures are discussed in the light of relevant structural parameters and literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号