首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this study, we comparatively analyzed the 115 Hsp70 genes identified in Gossypium raimondii, Gossypium hirsutum and Gossypium arboreum genomes. Those Hsp70 genes unequally distributed among chromosomes in A and D genome of cotton (Gossypium spp.), and were classified into 29 groups according to the homology of them. Based on the localization information of the orthologs in Arabidopsis, the Hsp70 proteins were predicted to locate in cytosol, endoplasmic reticulum, mitochondrion or chloroplast. Homologous analysis indicated the evolutionary conservation of Hsp70 in cotton. In addition, those Hsp70 genes were differently expressed in Suyuan-045, Hai-7124 and TM-1, which were highly resistant, resistant, and sensitive to Verticillium dahliae respectively. The expressions of 26 Hsp70 genes were induced by Verticillium dahliae except for Hsp70-07/16/25/26, and the result suggested the potential involvement of them in responding to Verticillium wilt. Hsp70-08/30/31 was highly expressed in both Suyuan-045 and Hai-7124, and it was hypothesized that they might be involved in the resistance to the invasion of Verticillium dahliae. 144h after inoculation with Verticillium dahliae, the expression of Hsp70-13/14/15 was only up-regulated in Suyuan-045, and it was assumed that they might be involved in resistance to the extension of Verticillium dahliae. Further study on those Hsp70 genes would be valuable to reveal the role of them in Verticillium wilt resistance.  相似文献   

3.
4.
5.
6.
7.
8.
9.

Key message

Eight R2R3 - MYB genes in tartary buckwheat were identified, and their expression patterns were comprehensively analyzed, which reveals role in plant response to abiotic stresses.

Abstract

The proteins of the R2R3-MYB superfamily play key roles in the growth and development processes as well as defense responses in plants. However, their characteristics and functions have not been fully investigated in tartary buckwheat (Fagopyrum tataricum), a strongly abiotic resistant coarse cereal. In this article, eight tartary buckwheat R2R3-MYB genes were isolated with full-length cDNA and DNA sequences. Phylogenetic analysis of the members of the R2R3-MYB superfamily between Arabidopsis and tartary buckwheat revealed that the assumed functions of the eight tartary buckwheat R2R3-MYB proteins are divided into five Arabidopsis functional subgroups that are involved in abiotic stress. Expression analysis during abiotic stress and exogenous phytohormone treatments identified that the eight R2R3-MYB genes responded to one or more treatments. This study is the first comprehensive analysis of the R2R3-MYB gene family in tartary buckwheat under abiotic stress.
  相似文献   

10.

Key message

PeSNAC1 , a stress-related NAC1 from Phyllostachys edulis , was characterized. Ectopic expression in Arabidopsis indicated that PeSNAC1 together with ped -miR164b participated in the regulation of organ boundaries and stress tolerance.

Abstract

NAC (NAM, ATAF1/2 and CUC2) participates in many different processes regulating plant growth, development, and stress response. A total of 125 NAC genes have been predicted in moso bamboo (Phyllostachys edulis), but their roles are poorly understood. PeSNAC1 targeted by ped-miR164b was focused for further study. The cleavage of PeSNAC1 mRNA guided by ped-miR164b was validated using RLM-5′ RACE. Tissue-specific expression analysis demonstrated that ped-miR164b had a declining trend from root, sheath, leaf, to that of stem, which was opposite to that of PeSNAC1. Transgenic Arabidopsis plants overexpressing either PeSNAC1 (OX-PeSNAC1) or, ped-miR164b (OX-ped-miR164b) driven by the CaMV35S promoter were generated. OX-ped-miR164b plants showed similar phenotype of cuc2 mutants whose growth was seriously suppressed. Compared with Col-0, sense OX-PeSNAC1 plants grew rapidly and flowered earlier, whereas antisense plants grew slowly and exhibited delayed flowering. Sense OX-PeSNAC1 plants had the greatest number of lateral roots, while antisense OX-PeSNAC1 and OX-ped-miR164b plants had fewer lateral roots than Col-0. Under NaCl and PEG6000 stresses, survival rates were higher and F v/F m values declined more slowly in sense OX-PeSNAC1 plants than in Col-0, with lower survival rates and a more rapid decrease in F v/F m values conversely observed in antisense OX-PeSNAC1 and OX-ped-miR164b plants. These findings indicated that ped-miR164b-targeted PeSNAC1 may play key roles in plant development and tolerance to salinity and drought stresses.
  相似文献   

11.
Verticillium wilt (V. wilt), a notorious wilt disease caused by Verticillium dahliae, often leads to the reduction of eggplant (Solanum melongena L.) production. MiRNAs, as a class of small RNAs, can regulate gene expression and then affect growth and development in plants. MiR395 has been proven to respond to sulfate-deficient stress in Arabidopsis thaliana and sulfate is well known to have a close relationship with plant disease resistance. To explore the function of eggplant miR395, we examined its expression in V. dahliae-infected eggplant by qRT-PCR and found miR395 exhibited a gradual reduction trend with time after infection. We then expressed pre-miR395 from Arabidopsis thaliana in Suqi eggplant and resistance analysis showed that miR395 overexpressed plants were hypersensitive to V. dahliae infection. We further measured the content of GSH and activities of POD and SOD and the results indicated that the index of GSH/POD/SOD in the overexpressed plants was lower than that of the wild-type control under V. dahliae infection. These results suggest that miR395 plays a negative role in eggplant response to V. dahliae infection.  相似文献   

12.
The present study was designed to synthesize the bioactive molecule 2,2-bis(2,4-dinitrophenyl)-2-(phosphonatomethylamino)acetate (1), having excellent applications in the field of plant protection as a herbicide. Structure of newly synthesized molecule 1 was confirmed by using the elemental analysis, mass spectrometric, NMR, UV-visible, and FTIR spectroscopic techniques. To obtain better structural insights of molecule 1, 3D molecular modeling was performed using the GAMESS programme. Microbial activities of 1 were checked against the pathogenic strains Aspergillus fumigatus (NCIM 902) and Salmonella typhimurium (NCIM 2501). Molecule 1 has shown excellent activities against fungal strain A. fumigates (35 μg/l) and bacterial strain S. typhimurium (25 μg/l). To check the medicinal significance of molecule 1, interactions with bovine serum albumin (BSA) protein were checked. The calculated value of binding constant of molecule 1–BSA complex was 1.4 × 106 M?1, which were similar to most effective drugs like salicylic acid. More significantly, as compared to herbicide glyphosate, molecule 1 has exhibited excellent herbicidal activities, in pre- and post-experiments on three weeds; barnyard grass (Echinochloa Crus), red spranglitop (Leptochloa filiformis), and yellow nuts (Cyperus Esculenfus). Further, effects of molecule 1 on plant growth-promoting rhizobacterial (PGPR) strains were checked. More interestingly, as compared to glyphosate, molecule 1 has shown least adverse effects on soil PGPR strains including the Rhizobium leguminosarum (NCIM 2749), Pseudomonas fluorescens (NCIM 5096), and Pseudomonas putida (NCIM 2847).  相似文献   

13.
Anthocyanins are secondary metabolites that play important roles in plant adaption to adverse environments. The anthocyanin biosynthetic pathway is conserved in high plants. Previous studies revealed the significant role of anthocyanins in natural-colorized cotton. However, little is known about the involvement of anthocyanins in the interaction of cotton and pathogen. In this study, a pathogen-induced gene was isolated from Gossypium barbadense that encodes an anthocyanidin synthase protein (GbANS) with dioxygenase structures. GbANS was preferentially expressed in colored tissue. Silencing of GbANS significantly reduced the production of anthocyanins, as well as the cotton’s resistance to Verticillium dahliae. Biochemical studies revealed that GbANS-silenced cotton accumulated more hydrogen peroxide compared to control plants during the V. dahliae invasion process. This accumulation of hydrogen peroxide corresponded with increased cell death around the invasion sites, which in turn accelerated the V. dahliae infection. Taken together, we found that GbANS contributes to the biosynthesis of anthocyanins in cotton and anthocyanins positively regulate cotton’s resistance to V. dahliae.  相似文献   

14.
Discussions concerning the composition of the genus Parendacustes Chop., in particular, its subgenus Minizacla Gor., are continued. Eleven new taxa of this subgenus are described: P. trusmadi sp. n., P. mulu sp. n., P. brevispina sp. n., P. modispina sp. n., P. longispina sp. n., P. forficula sabah subsp. n., P. doloduo sp. n., P. buton sp. n., P. pallescens sp. n., P. kendari sp. n., and P. lindu sp. n. New data on P. makassari Gor. are also provided.  相似文献   

15.

Key message

PtHSP17.8 was regulated by various abiotic stresses. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses through maintain ROS homeostasis and cooperate with stress-related genes in Arabidopsis.

Abstract

Small heat shock proteins (sHSPs) play important roles in response to diverse biotic and abiotic stresses, especially in heat tolerance. However, limited information is available on the stress tolerance roles of sHSPs in woody species. To explore the function of sHSPs in poplar, we isolated and characterized PtHSP17.8 from Populus trichocarpa. Phylogenetic analysis and subcellular localization revealed that PtHSP17.8 was a cytosolic class I sHSP. The gene expression profile of PtHSP17.8 in various tissues showed that it was significantly accumulated in stem and root, which was consistent with the GUS expression pattern driven by promoter of PtHSP17.8. The expression of PtHSP17.8 could be induced by various abiotic stresses and significantly activated by heat stress. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses in Arabidopsis. The seedling survival rate, root length, relative water content, antioxidative enzyme activities, proline, and soluble sugar content were increased in transgenic Arabidopsis under heat and salt stresses, but not in normal condition. The co-expression network of PtHSP17.8 were constructed and demonstrated many stress responsive genes included. The stress-related genes in the co-expression network were up-regulated in the PtHSP17.8 overexpression seedlings. These results suggest that PtHSP17.8 confers heat and salt tolerances in plants.
  相似文献   

16.
17.
18.

Key message

Evaluation and selection of reference genes in Pinus massoniana L. (PM) for gene expression studies of various tissues, floral organ development, and abiotic stress.

Abstract

An important prerequisite for obtaining accurate gene expression results using quantitative real-time PCR is the selection of a reference gene or a group of genes having a highly stable level of expression. Pinus massoniana L. (PM) is the predominant fast-growing timber forest tree species in southern China. In this study of PM, we evaluated various tissues, flowers in different developmental phases, leaves from a cultivar with insect resistance, and leaves from plants under several types of abiotic stresses. Comprehensive Analysis was performed using BestKeeper, Normfinder, geNorm, and RefFinder software to select the most stable reference gene or gene group from among 25 candidate genes in these samples. The results showed that different experimental conditions require the use of different reference genes: ACT1 could be used as a reference gene for all samples in this study; UBI4 was the best gene for various tissues and zinc stress; CYP was the most stable gene for leaves from insect-resistant materials and Pb stress; Fbox and UBI11 were the best reference genes for salt stress; Fbox + RRP8, ARF + TUBA, and EF1B + IDH were the best reference groups for drought stress, low temperature stress, and flowers in different developmental phases, respectively. This study presents a reliable selection of reference genes for Masson pine, and the conclusions are meaningful for improving the accuracy of expression analyses in future molecular biology studies.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号