首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, our working hypothesis was to examine whether temperature alters biomass and metabolite production by microalgae according to strain. We also addressed whether it is possible to choose a strain suitable for growing in each season of a given region. A factorial experiment revealed a significant interaction between chlorophylls a and b (Chl a and Chl b), carotenoid/Chl (a?+?b) ratio, biomass and total lipid productivity of six green microalgae (four Chlorella spp., Chlorella sorokiniana and Neochloris oleoabundans) after 15 days at four temperatures. At 39/35 °C, two Chlorella sp. strains (IPR7115 and IPR7117) showed higher total carotenoids/Chl (a?+?b) (0.578 and 0.830), respectively. N. oleoabundans had the highest Chl a (8210 μg L?1) and Chl b (1909 μg L?1) at 19/15 °C and highest maximum dry biomass (2900 mg L?1), specific growth rate (0.538 day?1) and total lipids (1003 mg L?1) at 15/8 °C. We applied a method to infer the growth of these six green microalgae in outdoor ponds, as based on their response to changing temperatures and by combining with historical data on day/night air temperature occurrence for a given region. We conclude that the use of regionalized maps based on air temperature is a good strategy for predicting microalgal cultivation in outdoor ponds based on their features and tolerance to changing temperature.  相似文献   

2.
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.  相似文献   

3.
The species composition and phytoplankton biomass, concentrations of chlorophyll “a” (Chl) and nutrients in the surface water layer, and accompanying hydrophysical conditions were studied in Onega Bay of the White Sea in June 2015. The temperature and salinity of surface water layer and the water column stability varied greatly in the bay. The nutrients' concentrations exceeded the limiting threshold necessary for the phytoplankton development. The phytoplankton abundance was relatively low, averaged as 13.46 ± 9.00 mg C/m3 (total phytoplankton biomass), 0.78 ± 0.43 mg/m3 (concentration of chlorophyll “a”), and 0.18 ± 0.27 mg C/m3 (picophytoplankton biomass). The highest phytoplankton biomass has been registered along the frontal zones. Three phytoplankton communities that differed significantly in their structure have been found.  相似文献   

4.
Viruses play a key role in all marine ecosystems, and yet little is known of their distribution in Antarctic waters, especially in bathypelagic waters (>1000 m). In this study, the abundance and distribution of viruses and their potential hosts from the surface to the bottom of Prydz Bay, Antarctic, was investigated using flow cytometry. Viruses and autotrophs were abundant in nearshore and continental shelf waters, while heterotrophic bacteria and picoeukaryotes were abundant in offshore waters. Virus and bacteria abundances generally decreased with increasing depth but increased slightly just above the seafloor. Within the water column, maximum virus numbers coincided with the maximum values of chlorophyll a (when greater than 0.1 μg l?1), in the surface and subsurface (25 m). In the open ocean, however, virus abundance usually correlated with bacterial abundance at greater depths (50, 300 and 500 m) where the surface chlorophyll a concentration was lower than 0.1 μg l?1. Viral abundance was correlated with the host cell abundance, and this was different in different pelagic zones (bacteria and autotrophs (i.e., chlorophyll a concentration) in the epipelagic waters, picoeukaryotes and bacteria in mesopelagic waters and bacteria in bathypelagic waters). Principle component analysis and Pearson correlation analysis indicated that there was a close relationship between virus abundance and chlorophyll a, bacteria and nutrients (NO2 + NO3, phosphate and silicate), and picoeukaryote abundance was mainly correlated with water depth and salinity.  相似文献   

5.
Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in ΦPSII, qP and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N, E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a, Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a, Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in ΦPSII, qP and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose–response of cowpea plants exposed to the water deficit.  相似文献   

6.
The optical properties, i.e., absorption and scattering spectra of ten strains of cyanobacteria from the Baltic Sea and Pomeranian lakes (Aphanizomenon flos-aquae KAC 15, Microcystis aeruginosa CCNP 1101, Anabaena sp. CCNP 1406, Synechocystis salina CCNP 1104, Phormidium sp. CCNP 1317, Nodularia spumigena CCNP 1401, Synechococcus sp. CCNP 1108, Nostoc sp. CCNP 1411, Cyanobacterium sp. CCNP 1105, Pseudanabaena cf. galeata CCNP 1312) grown under low light conditions were investigated. Moreover, the chlorophylls, carotenoids, and phycobilin composition as well as the size structure of chosen cyanobacteria were measured. Studied species revealed high diversity both in optical properties with the absorption spectra similarity index ranging from 0.67 to 0.94 and the pigment composition. The chlorophyll-specific absorption coefficient at 440 nm a ph *(440) varied between 0.017 and 0.065 m2 mg?1. The influence of the package effect was only observed in the case of large filamentous cyanobacteria like N. spumigena or Nostoc sp. Interestingly, the package effect factor Q a *(675) for large-celled Anabaena sp. was 0.92. Besides chlorophyll a, only echinenone, β-carotene, and phycocyanin were present in all analyzed cyanobacteria strains. Zeaxanthin, which is widely used as a marker pigment for cyanobacteria, was absent in the toxic N. spumigena and Anabaena sp., which are the species that occur in the Baltic Sea most frequently causing summer cyanobacterial blooms. The investigation also showed that the sample preservation technique can introduce some major errors within the absorption band affected by the phycocyanin absorption.  相似文献   

7.
8.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a′ (Zn-BChl a′) (Tsukatani et al. in J Biol Chem 287:5720–5732, 2012). Based upon experimental and quantum chemical 15N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a′. Chl a and 81-OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.  相似文献   

9.
Abundance and seasonal trophodynamics (specific growth rate, daily production, and grazing mortality) of the major picophytoplankton components, Synechococcus cyanobacteria (Syn) and picoeukaryotes (Pico-E), were studied at three stations in Sevastopol Bay and adjacent coastal waters (the Black Sea) in 2014 by flow cytometry and the dilution method. Pico-E abundance was shown to increase along the nutrient and pollution gradient from the coastal waters outside the bay (annual average of 7.3 ± 5.4 × 103 cells mL–1) to the eastern corner of the bay (28.7 ± 11.4 × 103 cells mL–1), while no relation was found between the water pollution status and Syn abundance (9.9 ± 8.7 × 103 cells mL–1; at all the stations, n = 27). Matter flows through the communities (daily production for Syn and Pico-E 0–16.6 and 0–19.3 µg C L–1 day–1, respectively; grazing mortality for Syn and PicoE 0–3.6 and 0–21.2 µg C L–1 day–1, respectively) were comparable to or even exceeded their biomass stocks (>0.05–6.8 and 0.9–26.5 µg C L–1 for Syn and PicoE, respectively), indicating high biomass turnover rates. The highest flow-to-stock ratio (up to 6 for Syn) and a significant imbalance between daily production (P) and grazing mortality (G) were observed in the most polluted and eutrophic waters of the bay in spring (Pico-E: P/G < 1) and late summer (Syn: P/G > 1). Black River inflow to the bay was hypothesized to be among the mechanisms maintaining this pronounced and long-term imbalance in the open system without any negative consequences for the picophytoplankton assemblages.  相似文献   

10.
Chlorophylls (Chl) are important pigments in plants that are used to absorb photons and release electrons. There are several types of Chls but terrestrial plants only possess two of these: Chls a and b. The two pigments form light-harvesting Chl a/b-binding protein complexes (LHC), which absorb most of the light. The peak wavelengths of the absorption spectra of Chls a and b differ by c. 20 nm, and the ratio between them (the a/b ratio) is an important determinant of the light absorption efficiency of photosynthesis (i.e., the antenna size). Here, we investigated why Chl b is used in LHCs rather than other light-absorbing pigments that can be used for photosynthesis by considering the solar radiation spectrum under field conditions. We found that direct and diffuse solar radiation (PARdir and PARdiff, respectively) have different spectral distributions, showing maximum spectral photon flux densities (SPFD) at c. 680 and 460 nm, respectively, during the daytime. The spectral absorbance spectra of Chls a and b functioned complementary to each other, and the absorbance peaks of Chl b were nested within those of Chl a. The absorption peak in the short wavelength region of Chl b in the proteinaceous environment occurred at c. 460 nm, making it suitable for absorbing the PARdiff, but not suitable for avoiding the high spectral irradiance (SIR) waveband of PARdir. In contrast, Chl a effectively avoided the high SPFD and/or high SIR waveband. The absorption spectra of photosynthetic complexes were negatively correlated with SPFD spectra, but LHCs with low a/b ratios were more positively correlated with SIR spectra. These findings indicate that the spectra of the photosynthetic pigments and constructed photosystems and antenna proteins significantly align with the terrestrial solar spectra to allow the safe and efficient use of solar radiation.  相似文献   

11.
The dependence of the heterotrophic activity of bacterioplankton (V, μg C L–1 h–1) on the concentration of chlorophyll a (Chl, μg L–1) and the water temperature (T) was examined for lakes (37°29′–80°36′ N) and marine polar waters (69°16′–80°36′ N). It was shown that ~76% of the V variations was related to changes in Chl and T.  相似文献   

12.
We investigate the carbon dynamics in Guanabara Bay, an eutrophic tropical coastal embayment surrounded by the megacity of Rio de Janeiro (southeast coast of Brazil). Nine sampling campaigns were conducted for dissolved, particulate and total organic carbon (DOC, POC and TOC), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), chlorophyll a (Chl a), pheo-pigments and ancillary parameters. Highest DOC, POC and Chl a concentrations were found in confined-shallow regions of the bay during the summer period with strong pCO2 undersaturation, and DOC reached 82 mg L?1, POC 152 mg L?1, and Chl a 800 μg L?1. Spatially and temporally, POC and DOC concentrations varied positively with total pigments, and negatively with DIC. Strong linear correlations between these parameters indicate that the production of TOC translates to an equivalent uptake in DIC, with 85% of the POC and about 50% of the DOC being of phytoplanktonic origin. Despite the shallow depths of the bay, surface waters were enriched in POC and DOC relative to bottom waters in periods of high thermohaline stratification. The seasonal accumulation of phytoplankton-derived TOC in the surface waters reached about 105 g C m?2 year?1, representing between 8 and 40% of the net primary production. The calculated turnover time of organic carbon was 117 and 34 days during winter and summer, respectively. Our results indicate that eutrophication of coastal bays in the tropics can generate large stocks of planktonic biomass and detrital organic carbon which are permanently being produced and partially degraded and buried in sediments.  相似文献   

13.
Sublethal concentrations of chemical insecticides may cause changes in some behavioral characteristics of natural enemies such as functional responses. The residual effect of three synthetic insecticides including deltamethrin, fenvalerate and azadirachtin were studied on functional response of Habrobracon hebetor Say to Ephestia kuehniella Zeller larvae. Seven host densities (2, 4, 8, 16, 32, 64 and 96) were used during a 24 h period. The resulting data were appropriately fit to Type II functional response models in all treatments: (1) control (0.0916 h?1; and T h  = 0.2011 h); (2) deltamethrin (a = 0.0839 h?1; and T h  = 0.3560 h); (3) fenvalerate (a = 0.0808 h?1 and T h  = 0.3623 h); and (4) azadirachtin (a = 0.0900 h?1 and T h  = 0.2042 h). Maximum theoretical parasitism rate (T/T h ) was 119.34 estimated for control wasps. There was no significant difference between the values of attack rates (a and a + D a ) in all treatments while the handling time was statistically affected in female wasps treated with fenvalerate. Our findings will be useful in safe application of these insecticides in pest management programmes.  相似文献   

14.
The marine benthic fauna in Arctic shallow-water is reported to be a relatively young assemblage by species of either Pacific or Atlantic affinity. Whether current deep-sea Pacific species are included in the affinity or not is unknown. Combining morphological comparisons and genetic analyses, a new deep-sea hydroid to science, Sertularia xuelongi sp. nov. (Cnidaria: Hydrozoa: Sertulariidae), is described from the northern margin of the Bering Sea Basin at depths of 800–1570 m collected in 2010. It is characterized by slender and zigzag-shaped hydrocauli, alternately arranged hydrothecae and the absence of distal-lateral horns in fully matured female gonothecae. Its distribution, currently known only from Bering Sea Basin, suggests that it could not be an Arctic species with Pacific affinity. However, phylogenetic analyses based on the mitochondrial 16S rRNA gene show that it is clustered into a distinctive clade with four closely related species recorded from shallow-water of Northwest France, Iceland, Chukchi Sea and/or Bering Sea. In addition, its sequence similarity is highly relevant to these four species: Sertularia argentea (98.6 %), S. cupressina (98.8 %), S. plumosa (98.8 %) and S. robusta (99.4 %). All these provide a new insight into the relevance of North Pacific deep-sea species to the benthic fauna in Arctic and adjacent shallow-water. The taxonomic restriction of the genus Sertularia and the re-validation of the genus Polyserias are discussed. Future researches on more deep-sea species from Pacific and/or Atlantic are required to understand the evolution and speciation pattern involved in polar relevance.  相似文献   

15.
We conducted an experiment to assess the predictive capability of a leaf optical meter for determining leaf pigment status of Acer mono Maxim., A. ginnala Maxim., Quercus mongolica Fisch., and Cornus alba displaying a range of visually different leaf colors during senescence. Concentrations of chlorophyll (Chl) a, Chl b, and total Chl [i.e., Chl (a+b)] decreased while the concentration of carotenoids (Car) remained relatively static for all species as leaf development continued from maturity to senescence. C. alba exhibited the lowest average concentration of Chl (a+b), Chl a, and Car, but the highest relative anthocyanin concentration, while Q. mongolica exhibited the highest Chl (a+b), Chl b, and the lowest relative anthocyanin concentration. A. mono exhibited the highest Chl a and Car concentrations. The relationships between leaf pigments and the values measured by the optical meter generally followed an exponential function. The strongest relationships between leaf pigments and optical measurements were for A. mono, A. ginnala, and Q. mongolica (R 2 ranged from 0.64 to 0.95), and the weakest relationships were for C. alba (R 2 ranged from 0.13 to 0.67). Moreover, optical measurements were more strongly related to Chl a than to Chl b or Chl (a+b). Optical measurements were not related to Car or relative anthocyanin concentrations. We predicted that weak relationships between leaf pigments and optical measurements would occur under very low Chl concentrations or under very high anthocyanin concentrations; however, these factors could not explain the weak relationship between Chl and optical measurements observed in C. alba. Overall, our results indicated that an optical meter can accurately estimate leaf pigment concentrations during leaf senescence — a time when pigment concentrations are dynamically changing — but that the accuracy of the estimate varies across species. Future research should investigate how species-specific leaf traits may influence the accuracy of pigment estimates derived from optical meters.  相似文献   

16.
Excitation energy transfer (EET) and trapping in Synechococcus WH 7803 whole cells and isolated photosystem I (PSI) complexes have been studied by time-resolved emission spectroscopy at room temperature (RT) and at 77 K. With the help of global and target analysis, the pathways of EET and the charge separation dynamics have been identified. Energy absorbed in the phycobilisome (PB) rods by the abundant phycoerythrin (PE) is funneled to phycocyanin (PC645) and from there to the core that contains allophycocyanin (APC660 and APC680). Intra-PB EET rates have been estimated to range from 11 to 68/ns. It was estimated that at RT, the terminal emitter of the phycobilisome, APC680, transfers its energy at a rate of 90/ns to PSI and at a rate of 50/ns to PSII. At 77 K, the redshifted Chl a states in the PSI core were heterogeneous, with maximum emission at 697 and 707 nm. In 72% of the PSI complexes, the bulk Chl a in equilibrium with F697 decayed with a main trapping lifetime of 39 ps.  相似文献   

17.
The seasonal dynamics of picophytoplankton communities in shallow turbid alkaline pans in Hungary was studied between July 2006 and May 2007. Similarly to other aquatic environments in the temperate zone, dominance of picocyanobacteria was observed in summer and that of picoeukaryotes in winter. The mild winter in 2006–2007, with midday water temperatures of 5–10°C, resulted in large winter phytoplankton blooms (maximum chlorophyll a concentration 800 μg l?1) in the shallow pans. The phytoplankton was composed of single-celled picoeukaryotes and had a maximum of 108 × 106 cells ml?1 in Büdös-szék pan, 50 × 106 cells ml?1 in Kelemen-szék pan in April 2007, and 47 × 106 cells ml?1 in Zab-szék pan in March 2007. In order to explain the winter dominance of picoeukaryotes, we isolated picoeukaryotic and picocyanobacterial strains and determined the temperature and light dependence of their photosynthesis. Under temperatures <15°C, the photosynthetic activity of the picoeukaryotic strain was higher and their light utilization was better than those of the picocyanobacterial strain. The results indicate that low temperature and light intensity in winter provide a competitive advantage to picoeukaryotes, while higher temperatures and light intensity are more favorable for picocyanobacteria.  相似文献   

18.
Frequently asked questions about chlorophyll fluorescence,the sequel   总被引:2,自引:0,他引:2  
Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121–158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.  相似文献   

19.
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m?2 s?1) or high light (HL, 875–1000 µmol photons m?2 s?1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin?+?Antheraxantin?+?Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.  相似文献   

20.
At present, chlorophyll meters are widely used for a quick and nondestructive estimate of chlorophyll (Chl) contents in plant leaves. Chl meters allow to estimate the Chl content in relative units - the Chl index (CI). However, using such meters, one can face a problem of converting CI into absolute values of the pigment content and comparing data acquired with different devices and for different plant species. Many Chl meters (SPAD-502, CL-01, CCM-200) demonstrated a high degree of correlation between the CI and the absolute pigment content. A number of formulas have been deduced for different plant species to convert the CI into the absolute value of the photosynthetic pigment content. However, such data have not been yet acquired for the atLEAF+ Chl meter. The purpose of the present study was to assess the applicability of the atLEAF+ Chl meter for estimating the Chl content. A significant species-specific exponential relationships between the atLEAF value (corresponding to CI) and extractable Chl a, Chl b, Chl (a+b) for Calamus dioicus and Cleistanthus sp. were shown. The correlations between the atLEAF values and the content of Chl a, Chl b, and Chl (a+b) per unit of leaf area was stronger than that per unit of dry leaf mass. The atLEAF value- Chl b correlation was weaker than that of atLEAF value-Chl a and atLEAF value-Chl (a+b) correlations. The influence of light conditions (Chl a/b ratio) on the atLEAF value has been also shown. The obtained results indicated that the atLEAF+ Chl meter is a cheap and convenient tool for a quick nondestructive estimate of the Chl content, if properly calibrated, and can be used for this purpose along with other Chl meters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号