首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The kinetic and steady-state characteristics of calcium currents in cultured bovine adrenal chromaffin cells were analyzed by the patch-clamp technique. Whole cell inward Ca2+ currents, recorded in the presence of either 5.2 or 2.6mm Ca2+ exhibited a single, noninactivating component. To analyze the effects of Ca2+ and Bay K-8644 on the kinetics of the Ca2+ currents, we used a modified version of the Hodgkin-Huxley empirical model. At physiological [Ca2+] (2.5mm) the midpoint of the steady-state Ca2+-channel activation curve lay at –6.9 mV. Increasing the [Ca2+] to 5.2mm shifted the midpoint by –4.3 mV along the voltage axis. At the midpoint, changes in potential of 7.8 mV (for 5.2mm Ca2+) and 9.2 mV (for 2.5mm Ca2+) induced ane-fold change in the activation of the current. Increasing [Ca2+]0 from 2.5 to 5.2mm induced a marked increase in the rate constant for turning on the Ca2+ permeability. Conductances were estimated from the slope of the linear part of the currentvoltage relationships as 8.7 and 4.2 nS in the presence of 5.2 and 2.5mm Ca2+, respectively. Incubation of the cells in the presence of Bay K-8644 at increasing concentrations from 0.001 to 0.1 m increased the slope conductance from 4.2 to 9.6 nS. Further increases in the concentration of Bay K-8644 from 1 to 100 m induced a marked reduction in the conductance to 1.1 nS. In the presence of Bay K-8644 (0.1 m) the midpoint of the activation curve was shifted by 6.1 mV towards more negative potentials, i.e., from –6.9 to –13 mV. At the midpoint potential of –13 mV, a change in potential of 6.9 mV caused ane-fold change in Ca2+ permeability. The kinetic analysis showed that Bay K-8644 significantly reduced the size of the rate constant for turning off the Ca2+ permeability.  相似文献   

2.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

3.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

4.
Summary The patch-clamp technique and measurements of single cell [Ca2+] i have been used to investigate the importance of extracellular Na+ for carbohydrate-induced stimulation of RINm5F insulin-secreting cells. Using patch-clamp whole-cell (current-clamp) recordings the average cellular transmembrane potential was estimated to be –60±1 mV (n=83) and the average basal [Ca2+] i 102±6nm (n=37). When challenged with either glucose (2.5–10mm) ord-glyceraldehyde (10mm) the cells depolarized, which led to the initiation of Ca2+ spike potentials and a sharp rise in [Ca2+] i . Similar effects were also observed with the sulphonylurea compound tolbutamide (0.01–0.1mm). Both the generation of the spike potentials and the increase in [Ca2+] i were abolished when Ca2+ was removed from the bathing media. When all external Na+ was replaced with N-methyl-d-glucamine, in the continued presence of either glucose,d-glyceraldehyde or tolbutamide, a membrane repolarization resulted, which terminated Ca2+ spike potentials and attenuated the rise in [Ca2+] i . Tetrodotoxin (TTX) (1–2 m) was also found to both repolarize the membrane and abolish secretagogue-induced rises in [Ca2+] i .  相似文献   

5.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

6.
External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+]i was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 ± 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 ± 2 nM (n = 23), indicating that [Ca2+] entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 ± 5% (P 0.05, Student t-test). The distance between the bioenergy specialist and Jurkat T cells and repetitive treatments of EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 ± 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels. (Mol Cell Biochem 271: 51–59, 2005)  相似文献   

7.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

8.
The effect of high K concentration, insulin and the L-type Ca2– channel blocker PN 200-110 on cytosolic intracellular free calcium ([Ca2+]i) was studied in single ventricular myocytes of 10-day-old embryonic chick heart, 20-week-old human fetus and rabbit aorta (VSM) single cells using the Ca2+-sensitive fluorescent dye, Fura-2 microfluorometry and digital imaging technique. Depolarization of the cell membrane of both heart and VSM cells with continuous superfusion of 30 mM [K+]o induced a rapid transient increase of [Ca2+]i that was followed by a sustained component. The early transient increase of [Ca2+]i by high [+]o was blocked by the L-type calcium channel antagonist nifedipine. However, the sustained component was found to be insensitive to this drug. PN 200-110 another L-type Ca2+ blocker was found to decrease both the early transient and the sustained increase of [Ca2+]i induced by depolarization of the cell membrane with high [K+]o. Insulin at a concentration of 40 to 80 U/ml only produced a sustained increase of [Ca2+]i that was blocked by PN 200-110 or by lowering the extracellular Ca2+ concentration with EGTA. The sustained increase of [Ca2+], induced by high [K+]o or insulin was insensitive to metabolic inhibitors such as KCN and ouabain as well to the fast Na+ channel blocker, tetrodotoxin and to the increase of intracellular concentrations of cyclic nucleotides. Using the patch clamp technique, insulin did not affect the L-type Ca2+ current and the delayed outward K+ current. These results suggest that the early increase of (Ca2+]i during depolarization of the cell membrane of heart and VSM cells with high [K+]o is due to the opening and decay of an L-type Ca 2+ channel. However, the sustained increase of [Ca2+]i during a sustained depolarization is due to the activation of a resting (R) Ca 2+ channel that is insensitive to lowering [ATP]i and sensitive to insulin.  相似文献   

9.
Summary The Ca2+-activated nonselective cation channel in mouse pancreatic acini has been studied with the help of patch-clamp single-channel current recording in both the cell-attached conformation and in excised inside-out membrane patches. In intact resting mouse pancreatic acinar cells no unitary activity was observed. Adding saponin to the bath solution to disrupt the plasma membrane (apart from the isolated patch membrane from which current recording was made) evoked unitary inward current steps when the free ionized Ca2+ concentration in the bath ([Ca2+] i ) was 5×10–8 m or above. When an electrically isolated patch membrane was excised and the internal aspects of the plasma membrane were exposed to the bath solution, channel activation could be obtained when [Ca2+] i was 10–7 m or above. However, with the passage of time the total inward current declined and about 1 min after excision no unitary current steps could be observed. At this stage Ca2+ in micromolar concentration was needed to open the channels and several hundred micromoles of Ca2+ per liter were required for maximal channel activation. Our results indicate that the Ca2+-activated nonselective cation channel is more sensitive to internal Ca2+ than hitherto understood and that it may therefore play a role under physiological conditions in intact cells.  相似文献   

10.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

11.
Summary The mechanisms of Cl-channel activation in the plasmalemma ofNitellopsis obtusa was studied by measuring both the transient inward current under voltage clamp and Cl efflux during the action potential. 9-anthracenecarboxylic acid (A-9-C) at 1.0mm inhibited both the transient inward current and the Cl efflux, but did not uncouple the sudden cessation of the cytoplasmic streaming. Since this excitation-cessation coupling is caused by a transient increase in the cytoplasmic Ca2+ concentration, these results suggest that A-9-C inhibited not the Ca2+ channel but specifically the Cl channel. The following results were found between the Ca2+-channel activation and the Cl-channel activation: (1) The Ca2+-channel blocker La3+ uncoupled the excitation-cessation coupling and inhibited both the transient inward current and the Cl efflux, although the Cl-channel blocker A-9-C did not affect the excitation-cessation coupling. (2) The Cl efflux was greatly reduced by depletion of Ca2+ from the external solution and restored by an increase in the external Ca2+ concentration. (3) An increase in the external ionic, strength which increases Ca2+ entry (T. Shiina & M. Tazawa,J. Membrane Biol. 96:263–276, 1987) enhanced the Cl efflux. (4) Mg2+, which cannot pass through the Ca2+ channel, reduced both the transient inward current and the Cl efflux. (5) Although Sr2+ can pass through the plasmalemma Ca2+ channel, Cl-channel activation by Sr2+ was only partial. These findings support the hypothesis that voltage-dependent Ca2+-channel activation, which increases the free Ca2+ concentration in the cytoplasm, is necessary for the subsequent Cl-channel activation.  相似文献   

12.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

13.
In the present study, we have examined any possible involvement of L-type Ca2+ channels in ginseng-mediated neuroprotective actions. Exposure to a 50 mM KCl (high-K) produced neuronal cell death, which was blocked by a selective L-type Ca2+ channel blocker in cultured cortical neurons. When cultured cells were co-treated with ginseng total saponin (GTS) and high-K, GTS reduced high-K-induced neuronal death. Using Ca2+ imaging techniques, we found that GTS inhibited high-K-mediated acute and long-term [Ca2+]i changes. These GTS-mediated [Ca2+]i changes were diminished by nifedipine. Furthermore, GTS-mediated effects were also diminished by a saturating concentration of Bay K (10 μM). After confirming the protective effect of GTS using a TUNEL assay, we found that ginsenosides Rf and Rg3 are active components in ginseng-mediated neuroprotection. These results suggest that inhibition of L-type Ca2+ channels by ginseng could be one of the mechanisms for ginseng-mediated neuroprotection in cultured rat cortical neurons.  相似文献   

14.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

15.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

16.
Summary Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of –62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 m) and diazoxide (100 m) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.  相似文献   

17.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

18.
Summary This communication reports the kinetics of the Na+/ Ca2+ exchanger and of the plasma membrane (PM) Ca2+ pump of the intact human platelet. The kinetic properties of these two systems were deduced by studying the rate of Ca2+ extrusion and its Na+ dependence for concentrations of cytoplasmic free Ca2+ ([Ca2+]cyt) in the 1–10-m range. The PM Ca2+ATPase was previously characterized (Johansson, J.S. Haynes, D.H. 1988. J. Membrane Biol. 104:147–163) for [Ca2+]cyt] 1.5 m with the fluorescent Ca2+ indicator quin2 (K d= 115 nm). That study determined that the PM Ca2+ pump in the basal state has a V max = 0.098 mm/min, a K m= 80 nm and a Hill coefficient = 1.7. The present study extends the measurable range of [Ca2+]cyt with the intracellular Ca2+ probe, rhod2 (K d= 500 nm), which has almost a fivefold lower affinity for Ca2+. An Appendix also describes the Mg2+ and pH dependence of the K dand fluorescence characteristics of the commercially available dye, which is a mixture of two molecules. Rates of active Ca2+ extrusion were determined by two independent methods which gave good agreement: (i) by measuring Ca2+ extrusion into a Ca2+-free medium (above citation) or (ii) by the newly developed ionomycin short-circuit method, which determines the ionomycin concentration necessary to short circuit the PM Ca2+ extrusion systems. Absolute rates of extrusion were determined by knowledge of how many Ca2+ ions are moved by ionomycin per minute. The major findings are as follows: (i) The exchanger is saturable with respect to Ca2+ with a K m= 0.97 ± 0.31 m and Vmax = 1.0 ± 0.6 mm/ min. (ii) At high [Ca2+]cyt, the exchanger works at a rate 10 times as large as the basal V max of the PM Ca2+ extrusion pump. (iii) The exchanger can work in reverse after Na+ loading of the cytoplasm by monensin. (iv) The PM Ca2+ extrusion pump is activated by exposure to [Ca2+]cyt 1.5 m for 20–50 sec. Activation raises the pump V max to 1.6 ± 0.6 mm/min and the K mto 0.55 ± 0.24 m. (v) The Ca2+ buffering capacity of the cytoplasm is 3.6 mm in the 0.1 to 3 m range of [Ca2+]cyt. In summary, the results show that the human platelet can extrude Ca2+ very rapidly at high [Ca2+]cyt. Both the Na+/Ca2+ exchanger and Ca2+ pump activation may prevent inappropriate platelet activation by marginal stimuli.Abbreviations cAMP cyclic adenosine 3,5-monophosphate - cGMP cyclic guanosine 3,5,-monophosphate - Ca-CAM calcium calmodulin; - DT dense tubules - B intrinsic cytoplasmic Ca2+ binding sites - R rhod2 or 5-(3,6-bis(dimethylamino)xanth-9-yl)-1-(2-amino-4-hy droxy lphenoxy)-2-(2-amino-5-methylphen- oxy)ethane-N,N,NN-tetraacetic acid - [Ca2+]cyt cytoplasmic Ca2+ activity - quin2 2-[[2-bis[(carboxymethyl)amino]-5-methyl-phenoxy]methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline - V or Vextrusion true rate of Ca2+ extrusion - fura-2 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,NN-tetraacetic acid - AM acetoxymethyl ester - DMSO dimethylsulfoxide - CTC chlortetracycline - EGTA ethyleneglycol-bis(-aminoethyl ether) N,N,N,N- tetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - NMDG N-methyl-d-glucamine - PIPES 1,4-piperazine-bis-(ethanesulfonic acid) - HPLC high performance liquid chromatography - I fraction of high-affinity rhod2 complexed with Ca2+ - F the observed fluorescence - Fmin the minimal fluorescence observed in the absence of Ca2+ - Fmax the maximal fluorescence observed when the dye is saturated with Ca2+ - X1 the fraction of high-affinity dye - K d,1 dissociation constant of high-affinity dye - K d,2 dissociation constant of the low-affinity dye - -d1/dt rate of Ca2+ removal from the rhod2-Ca complex; - -dF/dt the slope representing the absolute rate of fluorescence decrease in a progress curve - Fmax (Fmax — Fmin)cyt difference between maximal and minimal fluorescence for cytoplasmic high affinity form of rhod2 - F50 fluorescence of the high-affinity form ofrhod2for[Ca2+]cyt=50 nM - [Ca2+]0 external Ca2+concentration - K p proportionality constant between the total number of Ca2+ ions moved and the change in high-affinity rhod2 complexation to Ca2 - (d[Ca2+]cyt, T)/dt rate of Ca2+ influx obtained with maximal levels of ionomycin - kleak rate constant for passive inward Ca2+ leakage - kinno rate constant for ionomycin-mediated Ca2+ influx - T total - [rhod2]cyt,T total intracellular rhod2 concentration - [quin2]cyt,T total intracellular quin2 concentration - [B]T total cytoplasmic buffering capacity - A[Ca2+]cyt,T total number of Ca2+ ions moved into the cytoplasm - [rhod2-Ca]cyt, T change in concentration of total intracellular high-affinity rhod2 complexed to Ca2+ - [B-Ca]T change in concentration of total cytoplasmic binding sites complexed to Ca2+ - [quin2]cyt, T change in concentration of total intracellular quinl complexed to Ca2+ - change in the degree of intracellular quin2 saturation - 1 change in degree of saturation of cytoplasmic high-affinity rhod2 - 1-/t rate of change in degree of saturation of cytoplasmic high affinityrhod2 - Vobs observed rate of Ca2+ removal from the rhod2-Ca complex - V8.3 m the rate of Ca2+ removal from the high affinity rhod2-Ca complex at [Ca2+]cyt = 8.3 m - /t rate of change in of the degree of quin2 saturation - [Ca2+]cytT/t initial linear rate of ionomycin-mediated Ca2+ influx - EC50 effective concentration giving a half-maximal effect - [Na+]cyt cytoplasmic Na+ activity - CAM calmodulin - ACN acetonitrile - TFA trifuloroacetic acid  相似文献   

19.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

20.
Summary Electrical uncoupling of crayfish septate axons with acidification has been shown to cause a substantial increase in [Ca2+]i which closely matches in percent the increase in junctional resistance. To determine the origin of [Ca2+]i increase, septate axons have been exposed either to drugs that influence Ca2+ release from internal stores, caffeine and ryanodine, or to treatments that affect Ca2+ entry. A large increase in junctional resistance and [Ca2+]i maxima above controls resulted from addition of caffeine (10–30mm) to acetate solutions, while a substantial decrease in both parameters was observed when exposure to acetate-caffeine was preceded by caffeine pretreatment. In contrast, ryanodine (1–10 m) always caused a significant decrease in junctional resistance and [Ca2+]i maxima when applied either together with acetate or both before and with acetate. Calcium channel blockers such as La3+, Cd2+ and nisoldipine had no effect, while an increase in the [Ca2+] of acetate solutions either decreased junctional resistance and [Ca2+]i maxima or had no effect. The data suggest that cytoplasmic acidification causes an increase in [Ca2+]i by releasing Ca2+ from caffeine and ryanodine-sensitive Ca2+ stores. The increase in [Ca2+]i results in a decrease in gap junction conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号