首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha.  Carbon stable isotope ratios (δ13C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ13C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River’s water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery.  相似文献   

2.
Summary 1. Fishes can often rebound numerically and distributionally from short‐term (i.e. seasonal) drought, yet their capacity to recover from decades or centuries of drought is less apparent. An exceedingly warm and dry period swept the intermontane west of North America ca. 7500 years BP, concomitant with an abrupt extinction of >35 mammal species. Were larger fishes in mainstem rivers also impacted by this drought? 2. The Colorado River Basin encompasses seven states in western North America and drains 600 000 km2. Its endemic mainstem fish community is ancient (i.e. Miocene) but depauperate. 3. We evaluated one widely distributed candidate species (flannelmouth sucker, Catostomus latipinnis) for basin‐wide genetic and geographic structure at three fast‐evolving mitochondrial (mt) DNA genes, ND2 with 589 bp and ATPase 8 and 6 with 642 bp. It is hypothesized that a concomitant signature would be present in the mtDNA of this species, if indeed it had been seriously bottlenecked by post‐Pleistocene drought. A total of 352 individuals were sequenced from 24 populations (4–40 individuals/population; average of 14.7). 4. Only 49 unique haplotypes were found, 53% of which represented single individuals. Haplotype diversity was high (0.905 ± 0.007) whereas nucleotide diversity was low (0.002 ± 0.000). 5. A significant and positive geographical cline (P < 0.001) in nucleotide diversity was observed as sampling locations progressed upstream from southwest to northeast. These results divided the Colorado River Basin into three reaches: the lower reach with six populations and 83 individuals; the upper reach with seven populations and 83 individuals; and the middle reach with 11 populations and 186 individuals. An analysis of molecular variance (amova ) revealed that 81.5% of the total genetic variation was within populations, 16% among populations within reaches and 2.5% among reaches. Only the last was significant. Populations from the three reaches diverged from one another by 3400–11 000 years BP. Haplotype distribution suggested populations in the upper Colorado River are expanding. 6. The lack of genetic variation and recent coalescence of lineages in C. latipinnis are unusual given its fossil history, broad geographical sampling, the rapid rate of mtDNA evolution and the number (and evolutionary rate) of the genes examined. The most parsimonious explanation for these data is a rapid expansion following a recent period of low effective population size at the end of the Pleistocene. 7. The intense drought is suggested at the end of the Pleistocene (late‐to‐mid‐Holocene), severely impacted not only large mammals but also larger fishes in western North American rivers. These perspectives have important implications for management of endangered and threatened species in this region.  相似文献   

3.
We evaluated the phylogeography and historical demography of the cyprinid fish Gymnodiptychus dybowskii (subfamily Schizothoracinae) across three northern Qinghai‐Tibetan Plateau (QTP) river systems in the Tien Shan range: the Kaidu River, Ili River and Junggar Basin. Results from both mtDNA (16S rRNA and Cyt b) and nuDNA (RAG‐2) resolved three reciprocally monophyletic clades, one in each of the three river basins. Estimated divergence times (highest posterior density (HPD) 2.4–3.7 Mya) are consistent with the hypothesis that these three clades are products of vicariance resulting from the intensive uplift of QTP and Tien Shan, and resulting expansion of the Taklimakan and Gurbantunggut deserts. Several lines of evidence indicate dynamic demographic histories for the three clades, with late Quaternary population bottlenecks and expansions in the Kaidu and Ili rivers and, possibly, a Holocene decline in the Junggar Basin. For conservation purposes, the three clades should be treated as species or minimally, as evolutionarily significant units (ESUs). They have experienced decades of anthropogenic disturbance and preservation of the three species/ESUs will require more sustainable management of the aquatic resources.  相似文献   

4.
Mongolia's salmonids are suffering extensive population declines; thus, more comprehensive fisheries management and conservation strategies are required. To assist with their development, a better understanding of the genetic structure and diversity of these threatened species would allow a more targeted approach for preserving genetic variation and ultimately improve long‐term species recoveries. It is hypothesized that the unfragmented river basins that have persisted across Mongolia provide unobstructed connectivity for resident salmonid species. Thus, genetic structure is expected to be primarily segregated between major river basins. We tested this hypothesis by investigating the population structure for three salmonid genera (Hucho, Brachymystax and Thymallus) using different genetic markers to identify evolutionarily significant units (ESUs) and priority rivers to focus conservation efforts. Fish were assigned to separate ESUs when the combined evidence of mitochondrial and nuclear data indicated genetic isolation. Hucho taimen exhibited a dichotomous population structure forming two ESUs, with five priority rivers. Within the Brachymystax genus, there were three B. lenokESUs and one BtumensisESU, along with six priority rivers. While Btumensiswas confirmed to display divergent mtDNA haplotypes, haplotype sharing between these two congeneric species was also identified. For T. baicalensis,only a single ESU was assigned, with five priority rivers identified plus Lake Hovsgol. Additionally, we confirmed that T. nigrescens from Lake Hovsgol is a synonym of T. baicalensis. Across all species, the most prominent pattern was strong differentiation among major river basins with low differentiation and weak patterns of isolation by distance within river basins, which corroborated our hypothesis of high within‐basin connectivity across Mongolia. This new genetic information provides authorities the opportunity to distribute resources for management between ESUs while assigning additional protection for the more genetically valuable salmonid rivers so that the greatest adaptive potential within each species can be preserved.  相似文献   

5.
Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama‐Coosa‐Tallapoosa (ACT), and Apalachicola‐Chattahoochee‐Flint (ACF) basins. Using long‐term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure “expected” streamflow) at the sub‐basin scale over the past half‐century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non‐native species richness using binomial logistic regression. Sub‐basin extirpations in the Southwest (= 95 Upper CR,= 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub‐basin extirpations in the Southeast (ACT = 46, ACF = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin‐wide differences in native or non‐native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.  相似文献   

6.
The delimitation of species boundaries, particularly those obscured by reticulation, is a critical step in contemporary biodiversity assessment. It is especially relevant for conservation and management of indigenous fishes in western North America, represented herein by two species with dissimilar life histories codistributed in the highly modified Colorado River (i.e., flannelmouth sucker, Catostomus latipinnis; bluehead sucker, C. (Pantosteus) discobolus). To quantify phylogenomic patterns and examine proposed taxonomic revisions, we first employed double‐digest restriction site‐associated DNA sequencing (ddRAD), yielding 39,755 unlinked SNPs across 139 samples. These were subsequently evaluated with multiple analytical approaches and by contrasting life history data. Three phylogenetic methods and a Bayesian assignment test highlighted similar phylogenomic patterns in each, but with considerable difference in presumed times of divergence. Three lineages were detected in bluehead sucker, supporting elevation of C. (P.) virescens to species status and recognizing C. (P.) discobolus yarrowi (Zuni bluehead sucker) as a discrete entity. Admixture in the latter necessitated a reevaluation of its contemporary and historic distributions, underscoring how biodiversity identification can be confounded by complex evolutionary histories. In addition, we defined three separate flannelmouth sucker lineages as ESUs (evolutionarily significant units), given limited phenotypic and genetic differentiation, contemporary isolation, and lack of concordance (per the genealogical concordance component of the phylogenetic species concept). Introgression was diagnosed in both species, with the Little Colorado and Virgin rivers in particular. Our diagnostic methods, and the agreement of our SNPs with previous morphological, enzymatic, and mitochondrial work, allowed us to partition complex evolutionary histories into requisite components, such as isolation versus secondary contact.  相似文献   

7.
Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high‐elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high‐elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks.  相似文献   

8.
Anthropogenic selenium contamination of aquatic ecosystems was first associated with cooling reservoirs of coal-fired power plants in the late 1970s, and later with drainage water from agricultural irrigation activities in the 1980s. In the 1990s, selenium contamination has been raised as a concern in the recovery of currently endangered fish in the Colorado River system. Widespread contamination from seleniferous drain waters from agriculture has been documented in the upper and lower Colorado River basins. Historically, irrigation started in the upper Colorado River basin in the late 1880s. In the 1930s, selenium concentrations in various drains, tributaries, and major rivers in the upper and lower Colorado River basins were in the 100?s and 1000?s of µg/L. Native fish inhabiting large rivers such as the Colorado pikeminnow and razorback sucker were abundant before 1890, but became rare after 1910 to 1920, before the influence of mainstem reservoirs in the upper and lower Colorado River. A hypothesis is presented that selenium contamination of the tributaries and major rivers of the Colorado River basin in the 1890 to 1910 period caused the decline of the endangered fish and continues to inhibit their recovery.  相似文献   

9.
We used mitochondrial (mt) cytochrome b gene (cyt b) to compare the genetic variability in three hatchery broodstocks of white cloud mountain minnow with the variability in six wild populations sampled in two river drainages. A total of 43 haplotypes in 102 specimens were observed, with no haplotype shared between wild and hatchery populations. The nucleotide diversity of the wild samples (0.048) was significantly higher than that of the hatchery ones (0.007), but the haplotype diversity was almost similar between them. Two major phylogenetic haplotype groups were revealed and estimated to diverge about 6.531 myr (million years) ago. Significant genetic differentiation was revealed between wild and hatchery populations as well as among nine sampled populations, suggesting at chance effect during the founding process for the hatchery population and a subsequent genetic drift. According to the network, the connection between wild and hatchery populations indicates that present hatchery populations originated from single wild population. We suggested that two regions (Pearl River system and Lu River) identified by reciprocal mtDNA monophyly and SAMOVA should be regarded as three different ESUs and two different MUs in South China, respectively.  相似文献   

10.
Moving hybrid zones provide compelling examples of evolution in action, yet long‐term studies that test the assumptions of hybrid zone stability are rare. Using replicated transect samples collected over a 10‐year interval from 2002 to 2012, we find evidence for concerted movement of genetic clines in a plateau fence lizard hybrid zone (Sceloporus tristichus) in Arizona. Cline‐fitting analyses of SNP and mtDNA data both provide evidence that the hybrid zone shifted northward by approximately 2 km during the 10‐year interval. For each sampling period, the mtDNA cline centre is displaced from the SNP cline centre and maintaining an introgression distance of approximately 3 km. The northward expansion of juniper trees into the Little Colorado River Basin in the early 1900s provides a plausible mechanism for hybrid zone formation and movement, and a broadscale quantification of recent land cover change provides support for increased woody species encroachment at the southern end of the hybrid zone. However, population processes can also contribute to hybrid zone movement, and the current stability of the ecotone habitats in the centre of the hybrid zone suggests that movement could decelerate in the future.  相似文献   

11.
We estimated the daily age and growth of wild age‐0 alligator gar (Atractosteus spatula) from Choke Canyon Reservoir and the Guadalupe and Trinity rivers, Texas, USA. Growth rates of wild age‐0 alligator gar were compared across systems, as well as to alligator gar reared in a Texas hatchery. Estimated ages of alligator gar ranged from 7 to 80 days in Choke Canyon Reservoir (n = 140), 11–73 days in the Guadalupe River (n = 16), and 4–115 days in the Trinity River samples (n = 245). Alligator gar growth was faster in the Trinity and Guadalupe rivers than growth in Choke Canyon Reservoir. Growth of alligator gar in Choke Canyon Reservoir (3.60 ± 0.08 mm/day), the Guadalupe River (4.76 ± 0.35 mm/day), and the Trinity River (5.13 ± 0.07 mm/day) was faster than growth of hatchery reared fish (3.41 ± 0.08 mm/day). This study represents the first account of early growth of age‐0 alligator gar in the wild, and documents some of the fastest growth of age‐0 fish among freshwater fishes. We attribute the rapid growth of wild alligator gar to their quick transition to piscivory at early stages, and their effective use of habitat and resources on inundated floodplains during flood pulses. Future studies should explore the effects of environmental factors on the hatching success, growth, and survival of age‐0 alligator gar.  相似文献   

12.
This study dynamically monitors ecosystem performance (EP) to identify grasslands potentially suitable for cellulosic feedstock crops (e.g., switchgrass) within the Greater Platte River Basin (GPRB). We computed grassland site potential and EP anomalies using 9‐year (2000–2008) time series of 250 m expedited moderate resolution imaging spectroradiometer Normalized Difference Vegetation Index data, geophysical and biophysical data, weather and climate data, and EP models. We hypothesize that areas with fairly consistent high grassland productivity (i.e., high grassland site potential) in fair to good range condition (i.e., persistent ecosystem overperformance or normal performance, indicating a lack of severe ecological disturbance) are potentially suitable for cellulosic feedstock crop development. Unproductive (i.e., low grassland site potential) or degraded grasslands (i.e., persistent ecosystem underperformance with poor range condition) are not appropriate for cellulosic feedstock development. Grassland pixels with high or moderate ecosystem site potential and with more than 7 years ecosystem normal performance or overperformance during 2000–2008 are identified as possible regions for future cellulosic feedstock crop development (ca. 68 000 km2 within the GPRB, mostly in the eastern areas). Long‐term climate conditions, elevation, soil organic carbon, and yearly seasonal precipitation and temperature are important performance variables to determine the suitable areas in this study. The final map delineating the suitable areas within the GPRB provides a new monitoring and modeling approach that can contribute to decision support tools to help land managers and decision makers make optimal land use decisions regarding cellulosic feedstock crop development and sustainability.  相似文献   

13.
While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to understand how partial migratory populations are responding to ongoing environmental change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark–recapture data collected in 2009–2012. We compare survival and growth estimates between the Colorado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July–September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life‐long residents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.  相似文献   

14.
Commercial cattle ranching began in east central Arizona during the late 1880s when thousands of head of cattle were introduced onto the previously unexploited grasslands of the Little Colorado River Basin. Most of these animals were imported from western Texas where serious overgrazing had resulted in both catastrophic cattle losses and widespread range deterioration. By the turn of the century, the Texas experience had been repeated in Arizona, because Texas cattlemen continued to follow the same destructive stocking practices in this new region. This paper examines: (1) the early development of cattle ranching in the Little Colorado River Basin; (2) the various factors which contributed to overgrazing in the region; and (3) the consequences that commercial cattle ranching had on the local environment and on the pre-existing farming communities of the region.  相似文献   

15.
The morphologically unique and endangered humpback chub, Gila cypha, is found in canyon-bound reaches of the Colorado River and its tributaries. Now limited to six isolated reproducing populations, this species is believed to have been once distributed over a large portion of the mainstem river. Because the species inhabits remote canyon areas, little is known about its spawning ecology. The largest remaining population occurs in the lower Little Colorado River (LCR) near Grand Canyon, where we conducted a three-year study of spawning ecology during spring (March-June) 1993–1995. We analyzed seasonal patterns of movement, population density, relative condition, spawning scores, and frequency of ripe condition and fin abrasions and compared these data with seasonal discharge and water temperature to determine spawning phenology and ecology. Spawning commenced in late March, peaked in mid-April, and waned in mid-May. A high proportion of males remained ripe over this period, whereas ripe females were relatively abundant only in April. Increased densities of adult fish in March-April and rapid declines in May-June coupled with recaptures of 18.4% of these adults in the Colorado River suggest that a portion of the population migrated from the Colorado River into the LCR to spawn and then returned. Ripe males aggregated in areas of complex habitat structure with high angular variation in bottom profiles (matrix of large boulders, travertine masses combined with chutes, runs and eddies, 0.5–2.0 m deep) and were associated with deposits of clean gravel. Ripe females appeared to move to these male aggregations to spawn. Near-spawning (including gravid) females and non-spawning fish used similar habitats and were segregated but close (< 50 m) to habitats occupied by aggregations of ripe males. Abrasions on anal and lower caudal fins of males and females suggest that spawning involves contact with gravel substrates, where semi-adhesive eggs are deposited and fertilized. The findings of this study should aid recovery efforts for humpback chub by identifying spawning habitat within the historic distributional range where additional spawning stocks could be established.  相似文献   

16.
Evolution after the flood: phylogeography of the desert fish Utah Chub   总被引:1,自引:0,他引:1  
The Bonneville Basin and upper Snake River drainage of western North America underwent extensive hydrological changes during the late Pleistocene, potentially influencing the geographic distribution and evolutionary trajectories of aquatic species that occupied this region. To test this hypothesis, I reconstructed the phylogeographic history of the desert fish Utah chub (Gila atraria) by examining 16 populations that span the natural distribution of this species across the Bonneville Basin and upper Snake River. I compared mitochondrial control region sequences (934 bp) among 77 individuals revealing 24 unique haplotypes. Geographic and phylogenetic relationships among haplotypes were explored using parsimony, maximum likelihood, nested clade analysis, and analysis of molecular variance. I found that G. atraria is composed of two distinct clades that represent an early Pleistocene split between the upper Snake River and Bonneville Basin. Within each of these clades, geographic structuring was highly concordant with the hydrological history of late Pleistocene Lake Bonneville and the upper Snake River, suggesting that glacial-induced shifts in climate and unpredictable geological events have played a major role in shaping genetic subdivision among populations. To examine the effects of vicariant events on phenotypic divergence among Utah chub populations, I mapped chub life histories to the control region haplotype network. I found a nonrandom association between haplotypes and life-history phenotypes. These results suggest that historical events responsible for population fragmentation may have also contributed to phenotypic shifts in life histories, both indirectly by limiting gene flow among populations and directly by altering the selective environments where populations persisted.  相似文献   

17.
The European mudminnow (Umbra krameri) is a Middle Danubian endemic fish species, which is characterised by isolated populations living mainly in artificial habitats in the centre of its range, in the Carpathian Basin. For their long term preservation, reliable information is needed about the structure of stocks and the level of isolation. The recent distribution pattern, and the population genetic structure within and among regions were investigated to designate the Evolutionary Significant, Conservation and Management Units (ESUs, CUs, MUs) and to explore the conservation biological value of the shrinking populations. In total, eight microsatellite loci were studied in 404 specimens originating from eight regions. The results revealed a pronounced population structure, where strictly limited gene flow was detected among regions, as well as various strengths of connections within regions. Following the results of hierarchical structure analyses, two ESUs were supposed in the Carpathian Basin, corresponding to the Danube and Tisza catchments. Our results recommend designating the borders of CUs in an 80–90km range and 16 clusters should be set up as MUs for the 33 investigated populations. How these genetic findings can be used to better allocate conservation resources for the long term maintenance of the metapopulation structure of this threathened endemic fish is discussed.  相似文献   

18.
The Utah sucker (Catostomus ardens) is endemic to the Bonneville Basin and the upper Snake River drainage in western North America, and is thought to hybridize with the federally endangered June sucker (Chasmistes liorus mictus) in Utah Lake (Bonneville Basin). Here we describe the discovery of a major subdivision in Utah suckers (4.5% mitochondrial sequence divergence) between the ancient Snake River drainage and the Bonneville Basin. This boundary has not previously been recognized in Utah suckers based on morphologic variation, but has been recently described in two endemic cyprinids in the region. Populations in valleys east of the Wasatch Mountains in Utah clustered with the Snake River populations, suggesting that these valleys may have had an ancient hydrologic connection to the Snake River. We also found evidence of population isolation within the Bonneville Basin, corresponding to two Pleistocene sub-basins of the ancient Lake Bonneville. In contrast, we found no molecular evidence for deep divergence between Utah suckers and June suckers in Utah Lake or for a history of hybridization between divergent lineages in that population, although we recognize that demographic events may have obscured this signal. These findings suggest that the morphological differences between Utah and June suckers in Utah Lake may be the result of strong, and relatively recent, ecological selection. In summary, morphological and molecular characters seem to vary along different axes in different portions of the range of this taxon, providing an interesting system for studying the contributions of neutral and adaptive variation to species diversity.  相似文献   

19.
Protected areas (PAs) are essential for biodiversity conservation, but their coverage is considered inefficient for the preservation of all species. Many species are subdivided into evolutionarily significant units (ESUs) and the effectiveness of PAs in protecting them needs to be investigated. We evaluated the usefulness of the Brazilian PAs network in protecting ESUs of the critically endangered Pithecopus ayeaye through ongoing climate change. This species occurs in a threatened mountaintop ecosystem known as campos rupestres. We used multilocus DNA sequences to delimit geographic clusters, which were further validated as ESUs with a coalescent approach. Ecological niche modeling was used to estimate spatial changes in ESUs’ potential distributions, and a gap analysis was carried out to evaluate the effectiveness of the Brazilian PAs network to protect P. ayeaye in the face of climate changes. We tested the niche overlap between ESUs to gain insights for potential management alternatives for the species. Pithecopus ayeaye contains at least three ESUs isolated in distinct mountain regions, and one of them is not protected by any PA. There are no climatic niche differences between the units, and only 4% of the suitable potential area of the species is protected in present and future projections. The current PAs are not effective in preserving the intraspecific diversity of P. ayeaye in its present and future range distributions. The genetic structure of P. ayeaye could represent a typical pattern in campos rupestres endemics, which should be considered for evaluating its conservation status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号