首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Habitat shifts are implicated as the cause of many vertebrate radiations, yet relatively few empirical studies quantify patterns of diversification following colonization of new habitats in fishes. The pufferfishes (family Tetraodon‐tidae) occur in several habitats, including coral reefs and freshwater, which are thought to provide ecological opportunity for adaptive radiation, and thus provide a unique system for testing the hypothesis that shifts to new habitats alter diversification rates. To test this hypothesis, we sequenced eight genes for 96 species of pufferfishes and closely related porcupine fishes, and added 19 species from sequences available in GenBank. We time‐calibrated the molecular phylogeny using three fossils, and performed several comparative analyses to test whether colonization of novel habitats led to shifts in the rate of speciation and body size evolution, central predictions of clades experiencing ecological adaptive radiation. Colonization of freshwater is associated with lower rates of cladogenesis in pufferfishes, although these lineages also exhibit accelerated rates of body size evolution. Increased rates of cladogenesis are associated with transitions to coral reefs, but reef lineages surprisingly exhibit significantly lower rates of body size evolution. These results suggest that ecological opportunity afforded by novel habitats may be limited for pufferfishes due to competition with other species, constraints relating to pufferfish life history and trophic ecology, and other factors.  相似文献   

2.
Aim In this study, I examined the relative contributions of geography and ecology to species diversification within the genus Nerita, a prominent clade of marine snails that is widely distributed across the tropics and intertidal habitats. Specifically, I tested whether geographical patterns of speciation correspond primarily to allopatric or sympatric models, and whether habitat transitions have played a major role in species diversification. Location Indo‐West Pacific, eastern Pacific, Atlantic, tropical marine intertidal. Methods I used a previously reconstructed molecular phylogeny of Nerita as a framework to assess the relative importance of geographical and ecological factors in species diversification. To evaluate whether recently diverged clades exhibit patterns consistent with allopatric or sympatric speciation, I mapped the geo‐graphical distribution of each species onto the species‐level phylogeny, and examined the relationship between range overlap and time since divergence using age–range correlation analyses. To determine the relative contribution of habitat transitions to divergence, I traced shifts in intertidal substrate affinity and vertical zonation across the phylogeny using parsimony, and implemented randomization tests to evaluate the resulting patterns of ecological change. Results Within the majority of Nerita clades examined, age–range correlation analysis yielded a low intercept and a positive slope, similar to that expected under allopatric speciation. Approximately 75% of sister species pairs have maintained allopatric distributions; whereas more distantly related sister taxa often exhibited complete or nearly complete geographical overlap. In contrast, only 19% of sister species occupy distinct habitats. For both substrate and zonation, habitat transitions failed to concentrate towards either the tips or the root of the phylogeny. Instead, habitat shifts have occurred throughout the history of Nerita, with a general transition from the lower and mid‐littoral towards the upper and supra‐littoral zones, and multiple independent shifts from hard (rock) to softer substrates (mangrove, mud and sand). Main conclusions Both geography and ecology appear to have influenced diversification in Nerita, but to different extents. Geography seems to play a principal role, with allopatric speciation driving the majority of Nerita divergences. Habitat transitions appear insignificant in shaping the early and recent history of speciation, and promoting successive diversification in Nerita; however, shifts may have been important for respective divergences (i.e. those that correspond to the transitions) and enhancing diversity throughout the clade.  相似文献   

3.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

4.
Many species depend on multiple habitats at different points in space and time. Their effective conservation requires an understanding of how and when each habitat is used, coupled with adequate protection. Migratory shorebirds use intertidal and supratidal wetlands, both of which are affected by coastal landscape change. Yet the extent to which shorebirds use artificial supratidal habitats, particularly at highly developed stopover sites, remains poorly understood leading to potential deficiencies in habitat management. We surveyed shorebirds on their southward migration in southern Jiangsu, a critical stopover region in the East Asian Australasian Flyway (EAAF), to measure their use of artificial supratidal habitats and assess linkages between intertidal and supratidal habitat use. To inform management, we examined how biophysical features influenced occupancy of supratidal habitats, and whether these habitats were used for roosting or foraging. We found that shorebirds at four of five sites were limited to artificial supratidal habitats at high tide for ~11–25 days per month because natural intertidal flats were completely covered by seawater. Within the supratidal landscape, at least 37 shorebird species aggregated on artificial wetlands, and shorebirds were more abundant on larger ponds with less water cover, less vegetation, at least one unvegetated bund, and fewer built structures nearby. Artificial supratidal habitats were rarely used for foraging and rarely occupied when intertidal flats were available, underscoring the complementarity between supratidal roosting habitat and intertidal foraging habitat. Joined‐up artificial supratidal management and natural intertidal habitat conservation are clearly required at our study site given the simultaneous dependence by over 35,000 migrating shorebirds on both habitats. Guided by observed patterns of habitat use, there is a clear opportunity to improve habitat condition by working with local land custodians to consider shorebird habitat requirements when managing supratidal ponds. This approach is likely applicable to shorebird sites throughout the EAAF.  相似文献   

5.
The use of intertidal sandy beaches by fish and macrocrustaceans was studied at different temporal scales at the mouth of a tropical estuary. Samples were taken along the lunar and diel cycles in the late dry and rainy seasons. Fish assemblage (number of species, density and biomass), crustaceans and wrack biomass, showed significant interactions among all studied factors, and the combination of moon phase and diel cycle, resulting in different patterns of environmental variables (depth, water temperature and dissolved oxygen), affected habitat use by the different species. Variances in faunal community were detected between seasons, stimulated by salinity fluctuations from freshwater input during the rainy season. These differences suggest an important cycling of habitats and an increase in connectivity between adjacent habitats (estuary and coastal waters). Moreover, the results showed that this intertidal sandy beach also provides an alternative nursery and protected shallow‐water area for the initial development phase of many marine and estuarine species. In addition, this intertidal habitat plays an important role in the maintenance of the ecological functioning of the estuarine–coastal ecosystem continuum.  相似文献   

6.
Changes in morphology are often thought to be linked to changes in species diversification, which is expected to leave a signal of early burst (EB) in phenotypic traits. However, such signal is rarely recovered in empirical phylogenies, even for groups with well‐known adaptive radiation. Using a comprehensive phylogenetic approach in Dytiscidae, which harbours ~4,300 species with as much as 50‐fold variation in body size among them, we ask whether pattern of species diversification correlates with morphological evolution. Additionally, we test whether the large variation in body size is linked to habitat preference and whether the latter influences species turnover. We found, in sharp contrast to most animal groups, that Dytiscidae body size evolution follows an early‐burst model with subsequent high phylogenetic conservatism. However, we found no evidence for associated shifts in species diversification, which point to an uncoupled evolution of morphology and species diversification. We recovered the ancestral habitat of Dytiscidae as lentic (standing water), with many transitions to lotic habitat (running water) that are concomitant to a decrease in body size. Finally, we found no evidence for difference in net diversification rates between habitats nor difference in turnover in lentic and lotic species. This result, together with recent findings in dragonflies, contrasts with some theoretical expectations of the habitat stability hypothesis. Thus, a thorough reassessment of the impact of dispersal, gene flow and range size on the speciation process is needed to fully encompass the evolutionary consequences of the lentic–lotic divide for freshwater fauna.  相似文献   

7.
Habitat occupancy can have a profound influence on macroevolutionary dynamics, and a switch in major habitat type may alter the evolutionary trajectory of a lineage. In this study, we investigate how evolutionary transitions between marine and freshwater habitats affect macroevolutionary adaptive landscapes, using needlefishes (Belonidae) as a model system. We examined the evolution of body shape and size in marine and freshwater needlefishes and tested for phenotypic change in response to transitions between habitats. Using micro‐computed tomographic (µCT) scanning and geometric morphometrics, we quantified body shape, size, and vertebral counts of 31 belonid species. We then examined the pattern and tempo of body shape and size evolution using phylogenetic comparative methods. Our results show that transitions from marine to freshwater habitats have altered the adaptive landscape for needlefishes and expanded morphospace relative to marine taxa. We provide further evidence that freshwater taxa attain reduced sizes either through dwarfism (as inferred from axial skeletal reduction) or through developmental truncation (as inferred from axial skeletal loss). We propose that transitions to freshwater habitats produce morphological novelty in response to novel prey resources and changes in locomotor demands. We find that repeated invasions of different habitats have prompted predictable changes in morphology.  相似文献   

8.
Small-scale temporal variation in abundances of fauna in marine soft sediments has long been recognised. Many studies on rocky intertidal shores have, however, focused on larger fauna in single habitats and have primarily examined relatively long time-scales. The implications of small-scale variability are frequently not adequately addressed in the studies of changes in fauna over longer time-scales. Without knowledge of the magnitude of variation at smaller scales, comparisons across longer time-scales may be confounded. In this study, the temporal variability of a number of co-existing species of microgastropods in patches of two different intertidal habitats (coralline turf and sediment) in Botany Bay, New South Wales, Australia, was measured using a nested, hierarchical sampling design incorporating temporal scales of weeks, 1 and 3 months. In addition to habitats, there were also spatial scales of metres between plots and 100s of metres between the locations. There was generally a lack of consistency in the trends of variance for the three temporal scales at the smallest spatial scale of plots. In addition, the different species, including those that were closely related, showed different patterns of variation, depending on the habitat and site. These data show the importance of incorporating adequate scales of sampling in different habitats when analysing the distribution and abundance of microbenthos in intertidal habitats.  相似文献   

9.
Although classified among the greatest threats to the world's biodiversity, the effects of land use and their scale dependency are left unexplored in many taxonomic groups. Reptiles are among the most data‐deficient vertebrates in this respect, although their ecological traits make them highly sensitive to habitat modifications. We tested whether land use gradients shape the distributions of Mediterranean reptiles at regional and local scales, and whether species’ ecological traits and phylogeny explain these patterns. Reptiles are generally rare and hard to survey through standardized protocols. We overcame these obstacles by modeling an original data set of 18164 opportunistic occurrence records for 14 reptile species with spatially‐explicit point process models incorporating known sources of sampling heterogeneity and spatially autocorrelated error. At a regional scale, reptiles favored open habitats and tended to avoid urban areas. At a local scale, the persistence of open habitats did better than forest resulting from land abandonment in maintaining reptiles within a heavily anthropogenic matrix. Contrary to our expectations, the absence of any clear trait or phylogenetic signals suggests that these responses are mediated by a complex interplay between species’ ecology and regional biogeographic history. These results demonstrate that reptile responses to land use are scale‐dependent and locally exacerbated when anthropogenic pressure is high. We further show that land abandonment is insufficient to preserve reptiles in the face of anthropogenic pressures unless patches of suitable habitat are effectively maintained. Eventually, our study further illustrates the effectiveness of volunteer‐based opportunistic sampling in testing hypotheses on the determinants of rare species’ distributions.  相似文献   

10.
Competitor coexistence is often facilitated by spatial segregation. Traditionally, spatial segregation is predicted to occur when species differ in the habitat in which they are either superior at competing for resources or less susceptible to predation. However, predictions from a behavioural model demonstrate that spatial segregation and coexistence can also occur in the absence of such interspecific trade‐offs in competitive ability and vulnerability to predation. Unlike other models of competitor coexistence this model predicts that when species rank both habitat productivity and ‘riskinesses’ similarly, but differ slightly in their habitat‐specific vulnerabilities to predators, they will tend to segregate across habitats, with the species experiencing the higher ratio of mortality risk across the habitats occurring primarily in the safer habitat. Here, we investigate the hypothesis that intraspecific trade‐offs between resource availability and mortality risk can lead to spatial segregation of competing species by (1) documenting the spatial (i.e. intertidal) distribution of two marine snails, Littorina sitkana and L. subrotundata and (2) performing field experiments to quantify growth and mortality rates of each species at ‘low’ and ‘high’ intertidal heights. Our results indicate that both species agree on the rankings of habitat riskiness and productivity, experiencing higher predation and higher growth in low‐ than in high‐intertidal habitats. However, L. sitkana and L. subrotundata experienced differences in their habitat‐specific mortality risks and growth rates. Despite both species being similarly at risk of predation in high‐intertidal habitats (where mortality was lower), L. subrotundata was subject to significantly higher mortality than L. sitkana at the low‐intertidal height. In contrast, growth rate differences between habitats were greater for L. sitkana than for L. subrotundata. Whereas both species grew at the same rate at the high‐intertidal level (where growth was lower), L. sitkana individuals grew more rapidly than L. subrotundata snails at the low‐intertidal level. As predicted by the behavioural model, the species that experienced the higher ratio of mortality across habitats (i.e. L. subrotundata) occurred exclusively in the safer, high‐intertidal habitat. Taken together, these results provide support for the hypothesis that spatial segregation, and potentially competitor coexistence, can occur in the absence of interspecific trade‐offs in resource acquisition ability or vulnerability to predation.  相似文献   

11.
According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such ‘early bursts’ of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time‐calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation.  相似文献   

12.
Studies on the determinants of plant–herbivore and herbivore–parasitoid associations provide important insights into the origin and maintenance of global and local species richness. If parasitoids are specialists on herbivore niches rather than on herbivore taxa, then alternating escape of herbivores into novel niches and delayed resource tracking by parasitoids could fuel diversification at both trophic levels. We used DNA barcoding to identify parasitoids that attack larvae of seven Pontania sawfly species that induce leaf galls on eight willow species growing in subarctic and arctic–alpine habitats in three geographic locations in northern Fennoscandia, and then applied distance‐ and model‐based multivariate analyses and phylogenetic regression methods to evaluate the hierarchical importance of location, phylogeny and different galler niche dimensions on parasitoid host use. We found statistically significant variation in parasitoid communities across geographic locations and willow host species, but the differences were mainly quantitative due to extensive sharing of enemies among gallers within habitat types. By contrast, the divide between habitats defined two qualitatively different network compartments, because many common parasitoids exhibited strong habitat preference. Galler and parasitoid phylogenies did not explain associations, because distantly related arctic–alpine gallers were attacked by a species‐poor enemy community dominated by two parasitoid species that most likely have independently tracked the gallers’ evolutionary shifts into the novel habitat. Our results indicate that barcode‐ and phylogeny‐based analyses of food webs that span forested vs. tundra or grassland environments could improve our understanding of vertical diversification effects in complex plant–herbivore–parasitoid networks.  相似文献   

13.
Life-history variations in male and female fluvial sculpins, Cottus nozawae, were studied in a small mountain stream in Hokkaido, Japan, primarily by using capture-mark-recapture methods. At three study areas established along the stream course, the majority of marked sculpins were recaptured in their original location over one or more years, indicating their long-term occupation of each restricted habitat area. Sculpin densities increased toward the upstream habitats, whereas individual growth rates were more rapid downstream. In both sexes, sculpins distributed downstream matured at a larger body size and later in life than upstream sculpins, clearly demonstrating a clinal variation in these respects. A comparison of life-history variations in C. nozawae with those in amphidromous C. hangiongensis suggests that intrapopulational life-history variations in the former might be environmentally induced, and that one of the most important determinants for the variations in Cottus species might be population density.  相似文献   

14.
Habitat selection in avian species is a hierarchical process driven by different factors acting at multiple scales. Habitat preferences and site fidelity are two main factors affecting how colonial birds choose their breeding locations. Although these two factors affect how colonial species choose their habitats, previous studies have only focused on one factor at a time to explain the distribution of species at regional scales. Here we used 28 yr of colony location data of herons and egrets around Ibaraki prefecture in Japan in order to analyze the relative importance of habitat preferences and colony site fidelity for selecting breeding locations. We used Landsat satellite images together with a ground survey‐based map to create land‐use maps for past years and determine the habitats surrounding the herons and egrets colonies. Combining the estimated colony site fidelity with the habitat data, we used a random forest algorithm to create habitat selection models, which allowed us to analyze the changes in the importance of those factors over the years. We found high levels of colony site fidelity for each year of study, with its relative importance as a predictor for explaining colony distribution increasing drastically in the most recent five years. The increase in collective site fidelity could have been caused by recent changes in the population size of grey herons Ardea cinerea, a key species for colony establishment. We observed a balance between habitat preferences and colony site fidelity: habitat preferences were a more powerful predictor of colony distribution until 2008, when colony site fidelity levels were lower. Considering changes in the relative importance of these factors can lead to a better understanding of the habitat selection process and help to analyze bird species’ responses to environmental changes.  相似文献   

15.
Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat‐specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed‐habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced “spline‐and‐groove” morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size‐correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat‐specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study validates the use of this bone as an ecomorphological indicator. J. Morphol. 275:1201–1216, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

17.
Species distribution models analyse how species use different types of habitats. Their spatial predictions are often used to prioritize areas for conservation. Individuals may, however, prefer settling in habitat types of low quality compared to other available habitats. This ecological trap phenomenon is usually studied in a small number of habitat patches and consequences at the landscape level are largely unknown. It is therefore often unclear whether the spatial pattern of habitat use is aligned with the behavioural decisions made by the individuals during habitat selection or reflects actual variation in the quality of different habitat types. As species distribution models analyse the pattern of occurrence in different habitats, there is a conservation interest in examining what their predictions mean in terms of habitat quality when ecological traps are operating. Previous work in Belgium showed that red-backed shrikes Lanius collurio are more attracted to newly available clear-cut habitat in plantation forests than to the traditionally used farmland habitat. We developed models with shrike distribution data and compared their predictions with spatial variation in shrike reproductive performance used as a proxy for habitat quality. Models accurately predicted shrike distribution and identified the preferred clear-cut patches as the most frequently used habitat, but reproductive performance was lower in clear-cut areas than in farmland. With human-induced rapid environmental changes, organisms may indeed be attracted to low-quality habitats and occupy them at high densities. Consequently, the predictions of statistical models based on occurrence records may not align with variation in significant population parameters for the maintenance of the species. When species expand their range to novel habitats, such models are useful to document the spatial distribution of the organisms, but data on population growth rates are worth collecting before using model predictions to guide the spatial prioritization of conservation actions.  相似文献   

18.
Revegetation of previously cleared land is widely used to increase habitat area and connectivity of remnant vegetation for biodiversity conservation. Whether new habitat attracts or supports fauna depends on the dispersal traits of those fauna as well as the structure and composition of the surrounding landscape. Here, we examined wing morphology as a key dispersal trait for beetles in a revegetated landscape and asked, first, how it was related to phylogeny (family), trophic position, and body size. Second, we asked if wing morphology of recolonizing (or persisting) beetles varied with habitat characteristics at multiple scales, from microhabitat to landscape context. Third, we examined how common winged and wingless species responded to habitat at multiple scales. We measured the wing morphology of ground‐dwelling beetles from a restoration chronosequence, including paddocks, “young” revegetation (8–11 years old), “old” revegetation (14–19 years old), and fenced remnant vegetation. We found that body size and family membership were significant predictors of winglessness, with wingless species of carabids and curculionids being larger than their winged counterparts. We found no difference in the number of sites occupied by winged and wingless species, and no relationship between the wing morphology traits represented in different locations and habitat characteristics or landscape context. Furthermore, the most abundant species of both winged and wingless ground‐dwelling beetles had relatively little affinity to any habitat successional stage. Thus, despite intrinsic differences in wing morphology among species of ground‐dwelling beetle, we found no evidence that flight‐related dispersal limitations influenced recolonization (or persistence) in this landscape.  相似文献   

19.
The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood‐associated species. This is especially alarming given the important role wood‐inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad‐leaved‐dominated, herb‐rich forests are threatened habitats which have high wood‐inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man‐made afforested fields are novel habitats that could potentially be important for wood‐inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood‐inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb‐rich forests, four birch‐dominated wood pastures, and four birch‐dominated afforested field sites in central Finland. As predicted, natural herb‐rich forests were the most species‐rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications: In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man‐made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood‐associated species, and thus complement the existing conservation network of natural forests.  相似文献   

20.
Species can be rare or common in three different dimensions: geographic range size, habitat breadth, and local abundance. Understanding drivers of rarity are not only fundamentally interesting; it is also pertinent for their conservation. We addressed this challenge by analyzing the rarity of 291 native freshwater fishes occurring in ca 3500 independent stream reaches that span a broad environmental gradient across continental USA. Using phylogenetic regression and path analysis, we examined the concordance among the three rarity dimensions, and identified possible mechanisms by which species life‐history, habitat affinities, and biogeography drive variation in rarity. Weak double extinction jeopardies were driven by weakly positive correlations between habitat breadth and local abundance, and between habitat breadth and geographic range size. However, a triple extinction jeopardy was averted as local abundance and range size were not positively linked in our study. This is because large‐river and lacustrine habitat use mediated a trade‐off between local abundance and range size. Large rivers and lacustrine habitats represent important dispersal pathways and refugia that enabled fishes to acquire wide ranges; however, species using these habitats are less abundant overall because they are less adapted to small lotic channels, which comprise the majority of stream habitats in the US. Life‐history traits were key in governing the relationship between abundance and range size as large‐river and lacustrine habitat use were driven by body size, egg size, and parental care. Our analysis contributes novel insights into mechanisms that underlie multiple dimensions of rarity in freshwater fish and informs the prioritization of multiply rare species for conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号