首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
While global variation in taxonomic diversity is strongly linked to latitude, the extent to which morphological disparity follows geographical gradients is less well known. We estimated patterns of lineage diversification, morphological disparity and rates of phenotypic evolution in the Old World lizard family Lacertidae, which displays a nearly inverse latitudinal diversity gradient with decreasing species richness towards the tropics. We found that lacertids exhibit relatively constant rates of lineage accumulation over time, although the majority of morphological variation appears to have originated during recent divergence events, resulting in increased partitioning of disparity within subclades. Among subclades, tropical arboreal taxa exhibited the fastest rates of shape change while temperate European taxa were the slowest, resulting in an inverse relationship between latitudinal diversity and rates of phenotypic evolution. This pattern demonstrates a compelling counterexample to the ecological opportunity theory of diversification, suggesting an uncoupling of the processes generating species diversity and morphological differentiation across spatial scales.  相似文献   

2.
Phacopidae were a successful family of the Silurian–Devonian period. Although their diversity trends are well identified, their shape evolution is unknown; their morphology often considered to be conservative. We have quantified these morphologies using geometric morphometrics (landmarks) and investigated their evolution using morphological disparity indices. Results identified morphological variations between the genera, and through time. Phacopids differ from each other by the position of the facial suture linked to the size of the visual complex, the shape of the genal angle and the elongation of both cephalon and pygidium. The morphological disparity of cephala was high from the Silurian, contrary to that of pygidia. Subsequently, the morphological disparity increased in the Early Devonian with the development of narrow cephala and triangular pygidia. Morphological disparity was greater in the Emsian for both cephala and pygidia, more than 50 myr after the origination of phacopids. It constituted a perfect example illustrating that a peak of biodiversity does not necessarily happen in the early history of a clade. Subsequently, a strong decrease of morphological disparity occurred in the Middle Devonian, in conjunction with sea-level changes and anoxic events. Taxonomic richness and morphological disparity declined strongly in the Givetian, in a non-random extinction affecting particularly blind genera. The morphological disparity remained low in the Frasnian despite progressive eye reduction influenced by environmental changes. An extensive recovery occurred in the Famennian with an important increase of both taxonomic and morphological diversity. The Hangenberg event caused the final extinction of phacopids.  相似文献   

3.
Understanding the relationship between taxonomic and morphological changes is important in identifying the reasons for accelerated morphological diversification early in the history of animal phyla. Here, a simple general model describing the joint dynamics of taxonomic diversity and morphological disparity is presented and applied to the data on the diversification of blastozoans. I show that the observed patterns of deceleration in clade diversification can be explicable in terms of the geometric structure of the morphospace and the effects of extinction and speciation on morphological disparity without invoking major declines in the size of morphological transitions or taxonomic turnover rates. The model allows testing of hypotheses about patterns of diversification and estimation of rates of morphological evolution. In the case of blastozoans, I find no evidence that major changes in evolutionary rates and mechanisms are responsible for the deceleration of morphological diversification seen during the period of this clade''s expansion. At the same time, there is evidence for a moderate decline in overall rates of morphological diversification concordant with a major change (from positive to negative values) in the clade''s growth rate.  相似文献   

4.
Disparity, or morphological diversity, is often quantified by evolutionary biologists investigating the macroevolutionary history of clades over geological timescales. Disparity is typically quantified using proxies for morphology, such as measurements, discrete anatomical characters, or geometric morphometrics. If different proxies produce differing results, then the accurate quantification of disparity in deep time may be problematic. However, despite this, few studies have attempted to examine disparity of a single clade using multiple morphological proxies. Here, as a case study for this question, we examine the disparity of the volant Mesozoic fossil reptile clade Pterosauria, an intensively studied group that achieved substantial morphological, ecological and taxonomic diversity during their 145+ million-year evolutionary history. We characterize broadscale patterns of cranial morphological disparity for pterosaurs for the first time using landmark-based geometric morphometrics and make comparisons to calculations of pterosaur disparity based on alternative metrics. Landmark-based disparity calculations suggest that monofenestratan pterosaurs were more diverse cranially than basal non-monofenestratan pterosaurs (at least when the aberrant anurognathids are excluded), and that peak cranial disparity may have occurred in the Early Cretaceous, relatively late in pterosaur evolution. Significantly, our cranial disparity results are broadly congruent with those based on whole skeleton discrete character and limb proportion data sets, indicating that these divergent approaches document a consistent pattern of pterosaur morphological evolution. Therefore, pterosaurs provide an exemplar case demonstrating that different proxies for morphological form can converge on the same disparity signal, which is encouraging because often only one such proxy is available for extinct clades represented by fossils. Furthermore, mapping phylogeny into cranial morphospace demonstrates that pterosaur cranial morphology is significantly correlated with, and potentially constrained by, phylogenetic relationships.  相似文献   

5.
Patterns of morphological disparity yield important insight into the causes of diversification and adaptive radiation in East African cichlids. However, comparisons of cichlid disparity have often failed to consider the effects that differing clade ages or stochasticity may have on disparity before making interpretations. Here, a model of branching morphological evolution allows assessment of the relative contributions of differing turnover and morphological change rates, clade ages, and stochastic variation to the observed patterns of disparity in four endemic tribes of Lake Tanganyika cichlids. Simulations compare the likelihood of generating the observed disparity of the four tribes using 200-parameter combinations and four model conditioning variations, which allows inference of evolutionary rate differences among clades. The model is generally robust to model conditioning, the approach to data analysis, and model assumptions. Disparity differences among the first three cichlid tribes, Ectodini, Lamprologini, and Tropheini, can be explained entirely by stochasticity and age, whereas the fourth tribe, Cyprichromini, has likely experienced lower rates of turnover and morphological change. This rate difference is likely related to the low dietary diversity of the Cyprichromini. These results highlight the importance of considering both clade age and stochastic variation when interpreting morphological diversity and evolutionary processes.  相似文献   

6.
Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well‐studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end‐Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the “halfway point” of avian evolution, I have been able to test how well extant‐only methods predict the diversity of fossil forms. All extant‐only methods underestimate the disparity, although the ratio of within‐ to between‐clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit.  相似文献   

7.
Species diversity and morphological disparity are two measures to examine the diversity of life. Evidence based on the fossil record suggests a complex relation between these two parameters of biodiversity including frequent decoupling of their assembly through time. However, rather few studies explored the correlation of these two measurements by studying extant plant species. This study was designed to explore the accumulation of morphological disparity of the derived Neotropical fern genus Pleopeltis. To explore the relationship of species diversity and morphological disparity, we employed several approaches including divergence time estimates based on DNA sequence variation, reconstruction of character state changes based on a morphological matrix comprising 41 discrete characters, and exploration of the phylomorphospace. Accumulation of species diversity and morphological disparity was found to be concordant although the assumption of independence was not rejected for the accumulation of genetic and morphological variation. The phylomorphospace reconstruction provided further evidence for clade‐specific morphospace expansion that imply developmental pathways and competition among clades as major factors shaping the assembly of morphological disparity over time.  相似文献   

8.
Taxonomic, morphological, and functional diversity are often discordant and independent components of diversity. A fundamental and largely unanswered question in evolutionary biology is why some clades diversify primarily in some of these components and not others. Dramatic variation in trunk vertebral numbers (14 to >300) among squamate reptiles coincides with different body shapes, and snake-like body shapes have evolved numerous times. However, whether increased evolutionary rates or numbers of vertebrae underlie body shape and taxonomic diversification is unknown. Using a supertree of squamates including 1375 species, and corresponding vertebral and body shape data, we show that increased rates of evolution in vertebral numbers have coincided with increased rates and disparity in body shape evolution, but not changes in rates of taxonomic diversification. We also show that the evolution of many vertebrae has not spurred or inhibited body shape or taxonomic diversification, suggesting that increased vertebral number is not a key innovation. Our findings demonstrate that lineage attributes such as the relaxation of constraints on vertebral number can facilitate the evolution of novel body shapes, but that different factors are responsible for body shape and taxonomic diversification.  相似文献   

9.
Horses (family Equidae) are a classic example of adaptive radiation, exhibiting a nearly 60‐fold increase in maximum body mass and a peak taxonomic diversity of nearly 100 species across four continents. Such patterns are commonly attributed to niche competition, in which increased taxonomic diversity drives increased size disparity. However, neutral processes, such as macroevolutionary ‘diffusion’, can produce similar increases in disparity without increased diversity. Using a comprehensive database of Equidae species size estimates and a common mathematical framework, we measure the contributions of diversity‐driven and diffusion‐driven mechanisms for increased disparity during the Equidae radiation. We find that more than 90% of changes in size disparity are attributable to diffusion alone. These results clarify the role of species competition in body size evolution, indicate that morphological disparity and species diversity may be only weakly coupled in general, and demonstrate that large species may evolve from neutral macroevolutionary diffusion processes alone.  相似文献   

10.
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life‐history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per‐clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges.  相似文献   

11.
Ecological adaptive radiation theory predicts an increase in both morphological and specific diversification when organisms colonize new environments. Accordingly, bursts of morphological diversification, characterized by low within‐subclade morphological disparity, may be associated with these increases in speciation rates. Conversely, increasing species density, reduction in available habitat, or increasing extinction rates are expected to cause rates of diversification to decline. We test these hypotheses by examining the tempo and mode of speciation in the lampropeltinine snakes, a morphologically variable group that colonized the New World ~24 million years ago and radiated throughout the Miocene. We show that specific diversification increased early in the history of the group, and that most morphological variation is partitioned among, rather than within subclades. These patterns provide further evidence for the hypothesis that morphological variation tends to be strongly partitioned among lineages when clades undergo early bursts of species diversification. A reduction in speciation rates may be indicative of density dependent effects due to a saturation of available ecological opportunity, rather than increases in extinction rates at the onset of the Pleistocene/Pliocene glacial cycles. This evidence runs counter to the general Pleistocene species pump model.  相似文献   

12.
The disparity in species richness among groups of organisms is one of the most pervasive features of life on earth. A number of studies have addressed this pattern across higher taxa (e.g. 'beetles'), but we know much less about the generality and causal basis of the variation in diversity within evolutionary radiations at lower taxonomic scales. Here, we address the causes of variation in species richness among major lineages of Australia's most diverse vertebrate radiation, a clade of at least 232 species of scincid lizards. We use new mitochondrial and nuclear intron DNA sequences to test the extent of diversification rate variation in this group. We present an improved likelihood-based method for estimating per-lineage diversification rates from combined phylogenetic and taxonomic (species richness) data, and use the method in a hypothesis-testing framework to localize diversification rate shifts on phylogenetic trees. We soundly reject homogeneity of diversification rates among members of this radiation, and find evidence for a dramatic rate increase in the common ancestor of the genera Ctenotus and Lerista. Our results suggest that the evolution of traits associated with climate tolerance may have had a role in shaping patterns of diversity in this group.  相似文献   

13.
The association between diversification and evolutionary innovations has been well documented and tested in studies of taxonomic richness but the impact that such innovations have on the diversity of form and function is less well understood. Using phylogenetically rigorous techniques, we investigated the association between morphological diversity and two design breakthroughs within the jaws of parrotfish. Similar intramandibular joints and other modifications of the pharyngeal jaws have evolved repeatedly in teleost fish and are frequently hypothesized to promote diversity. We quantified morphological diversity within six functionally important oral jaw traits using the Brownian motion rate of evolution to correct for phylogenetic and time‐related biases and compared these rates across clades that did and did not possess the intramandibular joint and the parrotfish pharyngeal jaw. No change in morphological diversity was associated with the pharyngeal jaw modification alone but rates of oral jaw diversification were up to 8× faster in parrotfish species that possessed both innovations. Interestingly, this morphological diversity may not have led to differential resource uses as available data suggest that members of this clade show remarkable homogeneity of diet.  相似文献   

14.
Several theories predict that rapidly diversifying clades will also rapidly diverge phenotypically; yet, there are also reasons for suspecting that diversification and divergence might not be correlated. In the widely distributed squirrel clade (Sciuridae), we test for correlations between per lineage speciation rates, species richness, disparity, and a time‐invariant measure of disparity that allows for comparing rates when evolutionary modes differ, as they do in squirrels. We find that species richness and speciation rates are not correlated with clade age or with each other. Disparity appears to be positively correlated with clade age because young, rapidly diversifying Nearctic grassland clades are strongly pulled to a single stable optimum but older, slowly diversifying Paleotropical forest clades contain lineages that diverge along multiple ecological and morphological lines. That contrast is likely due to both the environments they inhabit and their phylogenetic community structure. Our results argue against a shared explanation for diversity and disparity in favor of geographically mediated modes of speciation and ecologically mediated modes of phenotypic evolution.  相似文献   

15.
Abstract:  The distribution of organic forms is clumpy at any scale from populations to the highest taxonomic categories, and whether considered within clades or within ecosystems. The fossil record provides little support for expectations that the morphological gaps between species or groups of species have increased through time as it might if the gaps were created by extinction of a more homogeneous distribution of morphologies. As the quantitative assessments of morphology have replaced counts of higher taxa as a metric of morphological disparity, numerous studies have demonstrated the rapid construction of morphospace early in evolutionary radiations, and have emphasized the difference between taxonomic measures of morphological diversity and quantitative assessments of disparity. Other studies have evaluated changing patterns of disparity across mass extinctions, ecomorphological patterns and the patterns of convergence within ecological communities, while the development of theoretical morphology has greatly aided efforts to understand why some forms do not occur. A parallel, and until recently, largely separate research effort in evolutionary developmental biology has established that the developmental toolkit underlying the remarkable breadth of metazoan form is largely identical among Bilateria, and many components are shared among all metazoa. Underlying this concern with disparity is a question about temporal variation in the production of morphological innovations, a debate over the relative significance of the generation of new morphologies vs. differential probabilities of their successful introduction, and the relative importance of constraint, convergence and contingency in the evolution of form.  相似文献   

16.

Background

Which factors influence the distribution patterns of morphological diversity among clades? The adaptive radiation model predicts that a clade entering new ecological niche will experience high rates of evolution early in its history, followed by a gradual slowing. Here we measure disparity and rates of evolution in Carnivora, specifically focusing on the terrestrial-aquatic transition in Pinnipedia. We analyze fissiped (mostly terrestrial, arboreal, and semi-arboreal, but also including the semi-aquatic otter) and pinniped (secondarily aquatic) carnivorans as a case study of an extreme ecological transition. We used 3D geometric morphometrics to quantify cranial shape in 151 carnivoran specimens (64 fissiped, 87 pinniped) and five exceptionally-preserved fossil pinnipeds, including the stem-pinniped Enaliarctos emlongi. Range-based and variance-based disparity measures were compared between pinnipeds and fissipeds. To distinguish between evolutionary modes, a Brownian motion model was compared to selective regime shifts associated with the terrestrial-aquatic transition and at the base of Pinnipedia. Further, evolutionary patterns were estimated on individual branches using both Ornstein-Uhlenbeck and Independent Evolution models, to examine the origin of pinniped diversity.

Results

Pinnipeds exhibit greater cranial disparity than fissipeds, even though they are less taxonomically diverse and, as a clade nested within fissipeds, phylogenetically younger. Despite this, there is no increase in the rate of morphological evolution at the base of Pinnipedia, as would be predicted by an adaptive radiation model, and a Brownian motion model of evolution is supported. Instead basal pinnipeds populated new areas of morphospace via low to moderate rates of evolution in new directions, followed by later bursts within the crown-group, potentially associated with ecological diversification within the marine realm.

Conclusion

The transition to an aquatic habitat in carnivorans resulted in a shift in cranial morphology without an increase in rate in the stem lineage, contra to the adaptive radiation model. Instead these data suggest a release from evolutionary constraint model, followed by aquatic diversifications within crown families.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-015-0285-5) contains supplementary material, which is available to authorized users.  相似文献   

17.
Marine and terrestrial animals show a mosaic of lineage extinctions and diversifications during the Jurassic–Cretaceous transition. However, despite its potential importance in shaping animal evolution, few palaeontological studies have focussed on this interval and the possible climate and biotic drivers of its faunal turnover. In consequence evolutionary patterns in most groups are poorly understood. We use a new, large morphological dataset to examine patterns of lineage diversity and disparity (variety of form) in the marine tetrapod clade Plesiosauria, and compare these patterns with those of other organisms. Although seven plesiosaurian lineages have been hypothesised as crossing the Jurassic–Cretaceous boundary, our most parsimonious topology suggests the number was only three. The robust recovery of a novel group including most Cretaceous plesiosauroids (Xenopsaria, new clade) is instrumental in this result. Substantial plesiosaurian turnover occurred during the Jurassic–Cretaceous boundary interval, including the loss of substantial pliosaurid, and cryptoclidid diversity and disparity, followed by the radiation of Xenopsaria during the Early Cretaceous. Possible physical drivers of this turnover include climatic fluctuations that influenced oceanic productivity and diversity: Late Jurassic climates were characterised by widespread global monsoonal conditions and increased nutrient flux into the opening Atlantic‐Tethys, resulting in eutrophication and a highly productive, but taxonomically depauperate, plankton. Latest Jurassic and Early Cretaceous climates were more arid, resulting in oligotrophic ocean conditions and high taxonomic diversity of radiolarians, calcareous nannoplankton and possibly ammonoids. However, the observation of discordant extinction patterns in other marine tetrapod groups such as ichthyosaurs and marine crocodylomorphs suggests that clade‐specific factors may have been more important than overarching extrinsic drivers of faunal turnover during the Jurassic–Cretaceous boundary interval.  相似文献   

18.
The rates of species and trait diversification vary across the Tree‐of‐Life and over time. Whereas species richness and clade age generally are decoupled, the correlation of accumulated trait diversity of clades (trait disparity) with clade age remains poorly explored. Total trait disparity may be coupled with clade age if the growth of disparity (disparification) within and across clades is continuous with time in an additive niche expansion process (linear‐cumulative model), or alternatively if the rate of trait disparification varies over time and decreases as ecological space becomes gradually saturated (disparity‐dependent model). Using a clock‐calibrated phylogenetic tree for 143 freshwater macroinvertebrate families and richness and trait databases covering > 6400 species, we measured trait disparity in 18 independent clades that successively transitioned to freshwater ecosystems and analyzed its relation with clade age. We found a positive correlation between clade age and total disparity within clades, but no relationship for most individual traits. Traits unique to freshwater lifestyle were highly variable within older clades, while disparity in younger clades shifted towards partially terrestrial lifestyles and saline tolerance to occupy habitats previously inaccessible or underutilized. These results argue that constraints from incumbent lineages limit trait disparity in younger clades that evolved for filling unoccupied regions of the trait space, which suggests that trait disparification may follow a disparity‐dependent model. Overall, we provide an empirical pattern that reveals the potential of the disparity‐dependent model for understanding fundamental processes shaping trait dynamics across the Tree‐of‐Life.  相似文献   

19.
Parallel evolutionary radiations in adjacent locations have been documented in many systems, but typically at limited geographical scales. Here, we compare patterns of evolutionary radiation at the global scale in iguanian lizards, the dominant clade of lizards. We generated a new time‐calibrated phylogeny including 153 iguanian species (based on mitochondrial and nuclear data) and obtained data on morphology and microhabitats. We then compared patterns of species diversification, morphological disparity, and ecomorphological relationships in the predominantly Old World and New World clades (Acrodonta and Pleurodonta, respectively), focusing on the early portions of these radiations. Acrodonts show relatively constant rates of species diversification and disparity over time. In contrast, pleurodonts show an early burst of species diversification and less‐than‐expected morphological disparity early in their history, and slowing diversification and increasing disparity more recently. Analyses including all species (with MEDUSA) suggest accelerated diversification rates in certain clades within both Acrodonta and Pleurodonta, which strongly influences present‐day diversity patterns. We also find substantial differences in ecomorphological relationships between these clades. Our results demonstrate that sister clades in different global regions can undergo very different patterns of evolutionary radiation over similar time frames. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

20.
Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species‐rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well‐adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号