首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The winter‐rainfall region of southern Africa, covered largely by the fynbos and succulent karoo biomes, harbours the world's greatest concentration of geophyte species. Species diversity is greatest in the south‐west, where more than 500 species co‐occur in one quarter‐degree square; in the south‐east the values are generally around 100, and in the arid north‐west, always less than 50 (more often less than 10). In at least three species‐rich genera (Moraea, Eriospermum and Oxalis), the size of storage organs (bulbs, corms, tubers) varies inversely, with the largest average values occurring in the species‐poorer areas — both in the north‐western, and in the south‐eastern parts of the region. This negative correlation between average storage organ size and species diversity is, however, only observed at relatively large spatial scales, which suggests that there is no direct relationship between storage organ size and species diversity. More likely, both these measures are driven by winter rainfall amount and reliability, both of which peak in the south‐western Cape. We suggest that reliable winter rainfall makes large storage organs unnecessary and depresses extinction rates, thus leading to the accumulation of species.  相似文献   

2.
Aim Promoting population growth of genetically distinct subpopulations of Cape mountain zebra (Equus zebra zebra) is crucial to the survival of the subspecies. Several important Cape mountain zebra reserves are dominated by fynbos vegetation, and population growth is limited by a lack of grassland habitat. A fossil ungulate sequence spanning the last c. 18,000 years is examined to understand the long‐term history of this conservation challenge. Location Boomplaas Cave (BPA), South Africa. Methods The fossil sequence from BPA is examined to reconstruct ungulate community dynamics in relation to climate and vegetation change over the last 18,000 years. Results Ungulates from 18,000 to 12,000 years ago suggest an expansion of open grasslands that supported a grazing ecosystem dominated by an extinct caprine antelope and equid remains attributed to E. zebra and E. quagga. At the onset of the Holocene, the grazing ungulate community disappears and small browsers and mixed feeders dominate the assemblage, indicating the loss of open grassland vegetation. Several open‐habitat grazers go extinct at this time, and Equus persists at much lower abundances. This shift can be explained by global climate change across the Pleistocene–Holocene transition. Main conclusions The fossil sequence supports contemporary observations indicating that access to open grassland is crucial to maintaining large Cape mountain zebra subpopulations. Although fynbos is abundant throughout the historic range of the Cape mountain zebra, fossil evidence suggests that such vegetation is unlikely to support dense populations. It has been suggested that the acquisition of agricultural lands that were historically converted to open grasslands for livestock could promote Cape mountain zebra population growth. Results presented here support this management option, as the open grasslands in these converted landscapes likely approximate the vegetation structure during latest Pleistocene, when grasslands were widespread and grazing ungulates abundant.  相似文献   

3.
Taxonomy of the Smaug warreni species complex remains contentious despite known morphological differences and geographical separation of the various taxa. This study uses an 11‐gene dataset to recover phylogenetic relationships between the seven nominal members of the S. warreni complex. Eight well‐supported clades were returned, with S. warreni barbertonensis found to be paraphyletic. A time‐calibrated analysis of molecular data indicates that all eight clades in the S. warreni complex separated in the late Miocene, much earlier than the date suggested by the existing hypothesis of vicariance through the ingression of Kalahari sands. Ecological niche modelling indicates that although all clades are allopatric, a slight decrease in temperature could potentially render them sympatric, supporting an hypothesis of range expansion through climatic change. © 2014 The Linnean Society of London  相似文献   

4.
The exceptionally high plant diversity of the Greater Cape Floristic Region (GCFR) comprises a combination of ancient lineages and young radiations. A previous phylogenetic study of Aizoaceae subfamily Ruschioideae dated the radiation of this clade of > 1500 species in the GCFR to 3.8–8.7 Mya, establishing it as a flagship example of a diversification event triggered by the onset of a summer‐arid climate in the region. However, a more recent analysis found an older age for the Ruschioideae lineage (17 Mya), suggesting that the group may in fact have originated much before the aridification of the region 10–15 Mya. Here, we reassess the tempo of radiation of ice plants by using the most complete generic‐level phylogenetic tree for Aizoaceae to date, a revised calibration age and a new dating method. Our estimates of the age of the clade are even younger than initially thought (stem age 1.13–6.49 Mya), supporting the hypothesis that the radiation post‐dates the establishment of an arid environment in the GCFR and firmly placing the radiation among the fastest in angiosperms (diversification rate of 4.4 species per million years). We also statistically examine environmental and morphological correlates of richness in ice plants and find that diversity is strongly linked with precipitation, temperature, topographic complexity and the evolution of highly succulent leaves and wide‐band tracheids. © 2013 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 110–129.  相似文献   

5.
6.
Habitat specialists such as soft-bodied invertebrates characterized by low dispersal capability and sensitivity to dehydration can be employed to examine biome histories. In this study, the Cape velvet worm (Peripatopsis capensis) was used to examine the impacts of climatic oscillations on historical Afromontane forest in the Western Cape, South Africa. Divergence time estimates suggest that the P. capensis species complex diverged during the Pliocene epoch. This period was characterized by dramatic climatic and topographical change. Subsequently, forest expansion and contraction cycles led to diversification within P. capensis. Increased levels of genetic differentiation were observed along a west-to-south-easterly trajectory because the south-eastern parts of the Cape Fold Mountain chain harbour larger, more stable fragments of forest patches, have more pronounced habitat heterogeneity and have historically received higher levels of rainfall. These results suggest the presence of three putative species within P. capensis, which are geographically discreet and genetically distinct.  相似文献   

7.
All freshwater calanoids in southern Africa belong to the family Diaptomidae of which there are two subfamilies, the Paradiaptominae (Lovenula, Paradiaptomus and Metadiaptomus) and Diaptominae (Tropodiaptomus and Thermodiaptomus). The Paradiaptominae are endemic to Africa, while the Diaptominae have one endemic African genus Thermodiaptomus, and the other genus Tropodiaptomus, occurs in other parts of the world as well as Africa. Knowledge of distribution of the Diaptomidae has been hampered by incomplete taxonomic knowledge and lack of co-ordination of available information. Distribution patterns of 19 described species and 11 new species confirm that the majority of species have a limited distribution, and that the Paradiaptominae are arid-adapted and belong to temporary pool communities. Six species are endemic to coastal pans and vleis of the western and southern Cape Province. Only those species with a wider distribution have been recorded as colonising man-made lakes. The four Lovenula species are predators and often co-exist with a Metadiaptomus species as prey. Synapomorphies of widely separated species of the Paradiaptominae, provide interesting insights into how their evolution may have been governed by vicariance, dispersal and palaeoenvironments of the African continent.  相似文献   

8.
Southern Africa boasts a wealth of endemic fauna and flora, comprising both massive recent radiations such as those characteristic of the Cape flora, and solitary ancient species such as the peculiar desert gymnosperm Welwitschia. This study was undertaken to identify ancient biological lineages (tetrapod and vascular plant lineages of Eocene age or older) endemic to southern Africa, and to map their distribution across the region. Twenty‐seven (17 plant and ten animal) lineages were identified, and distribution maps were generated for each of them across 74 operational geographic units, which were then combined into total endemism and corrected weighted endemism per unit area. Total endemism peaked along South Africa's coast and Great Escarpment, but in the case of weighted endemism high values were also recorded along other portions of the Great Escarpment further north. A review of the lineages sister to southern African ancient endemic lineages showed that these are often globally widespread, and many of them differ substantially from the southern African ancient lineages in terms of morphology and ecology. The mechanisms of ancient lineage survival in the region are discussed, and their importance for conservation in southern Africa is emphasised.  相似文献   

9.
Aim To evaluate the role of habitat heterogeneity on species richness and turnover in the mega species‐rich Cape Floristic Region (Cape), the mediterranean region of southern Africa. Location The Cape and Drakensberg regions of southern Africa. Methods Bioclimatic data were used to estimate habitat amount and habitat heterogeneity in the Cape and Drakensberg regions; these data were then used to explain the patterns of species diversity in the Pentaschistis clade (Poaceae) in these two regions. Habitat variables were used to create ‘bioclimatic units’ to characterize 1′× 1′ cells in southern Africa and to describe the niches of species. Using these bioclimatic units, the niche and range sizes of species in the two regions were compared. A phylogram was used to test for age and lineage effects. Results Pentaschistis species diversity and turnover are higher in the Cape than the Drakensberg. There is no significant difference in the habitat amount and heterogeneity between the two regions. Species occupy the same range of estimated niche sizes, yet there are significantly more range‐restricted Pentaschistis species in the Cape. Main conclusions The roles of age‐ and lineage‐related effects are rejected; biodiversity differences lie in the regions. Current macrohabitat does not explain the differences in biodiversity between the two regions. The larger number of range‐restricted species in the Cape cannot be explained by dispersal mechanism or the occupation of range‐restricted habitats. Species of Pentaschistis and other Cape clades share characteristics associated with species from historically climatically stable areas, and palaeoclimatic and palaeontological evidence indicates the Cape climate has been more stable than the Drakensberg climate throughout the Pleistocene. We conclude that the corresponding lack of extinction might have allowed an accumulation of species in the Cape. Similar climatic and biological evidence for the south‐west Australian Floristic and Mediterranean regions indicate that the same mechanism might explain the high species richness of these mediterranean regions.  相似文献   

10.
The southern African landscape appears to have experienced frequent shifts in vegetation associated with climatic change through the mid-Miocene and Plio-Pleistocene. One group whose historical biogeography may have been affected by these fluctuations are the dwarf chameleons (Bradypodion), due to their associations with distinct vegetation types. Thus, this group provides an opportunity to investigate historical biogeography in light of climatic fluctuations. A total of 138 dwarf chameleons from the Cape Floristic Region of South Africa were sequenced for two mitochondrial genes (ND2 and 16S), and resulting phylogenetic analyses showed two well-supported clades that are distributed allopatrically. Within clades, diversity among some lineages was low, and haplotype networks showed patterns of reticulate evolution and incomplete lineage sorting, suggesting relatively recent origins for some of these lineages. A dispersal-vicariance analysis and a relaxed Bayesian clock suggest that vicariance between the two main clades occurred in the mid-Miocene, and that both dispersal and vicariance have played a role in shaping present-day distributions. These analyses also suggest that the most recent series of lineage diversification events probably occurred within the last 3-6 million years. This suggests that the origins of many present-day lineages were founded in the Plio-Pleistocene, a time period that corresponds to the reduction of forests in the region and the establishment of the fynbos biome.  相似文献   

11.
 We examined patterns of cpDNA RFLP variability using 21 restriction endonucleases in 21 populations of Androcymbium that represent 12 endemic species distributed in the winter rainfall areas of South Africa to explore the diversification of the genus in its area of maximum species diversity. Our results are supportive of a diversification landscape characterized by continued opportunistic short-range invasion, naturalization, and rapid speciation, in which the selective action of the different environments where Androcymbium species occur determined their colonization success and subsequent short-range geographic expansion. The historical presence of fire, the constraint imposed by the low concentration of nutrients throughout southwestern South Africa and the different reproductive capabilities of Androcymbium species have also likely stimulated species' diversification. Our divergence time estimates bolster the view that speciation of South African Androcymbium initiated in the late Eocene, intensified in the Oligocene and proceeded more sporadically during the Miocene. These chronological estimates also substantiate the previous hypothesis that most lineages of Androcymbium in South Africa are much more ancient than their North African relatives, whose diversification began in the late Miocene-early Pliocene. Received July 25, 2001 Accepted December 6, 2001  相似文献   

12.
Four species of tortoise beetle (Chrysomelidae, Cassidinae) (Cassida spatiosa Spaeth and three undescribed Cassida species, labelled 1. 2 and 3) from South Africa, were assessed as potential biological control agents against Chrysanthemoides monilifera monilifera (L.) T. Norl. and C. m. rotundata (DC.) T. Norl. These southern African plants are important weeds of conservation areas in Australia. In South Africa, Cassida spatiosa was found feeding on C monilifera subcanescens (DC.) T. Norl., Cassida sp. 1 on Chrysanthemoides monilifera pisifera (L.) T. Norl. and C m. monilifera, Cassida sp. 2 on C m. pisifera and Chrysanthemoides incana (Burm.f.) T. Norl. and Cassida sp. 3 on C. m. rotundata. The life cycle of each species was completed in about three months on the leaves of the host. Cassida species 1, 2 and 3 were tested against eight species of plant and only fed and completed development on Chrysanthemoides species and the related species. Calendula officinalis L. Cassida species 1 and 3 showed no preference between Calendula officinalis and Chrysanthemoides species for oviposition. Cassida species 3 was selected for further assessment as a biological control agent based on match to the host subspecies and target climate in Australia.  相似文献   

13.
Background and AimsGlobal plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness.MethodsWe evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort.Key ResultsWhile intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37–0.64), and almost all traits had detectable associations with plant fitness.ConclusionsIntraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.  相似文献   

14.
Using spatial predictions of future threats to biodiversity, we assessed for the first time the relative potential impacts of future land use and climate change on the threat status of plant species. We thus estimated how many taxa could be affected by future threats that are usually not included in current IUCN Red List assessments. Here, we computed the Red List status including future threats of 227 Proteaceae taxa endemic to the Cape Floristic Region, South Africa, and compared this with their Red List status excluding future threats. We developed eight different land use and climate change scenarios for the year 2020, providing a range of best‐ to worst‐case scenarios. Four scenarios include only the effects of future land use change, while the other four also include the impacts of projected anthropogenic climate change (HadCM2 IS92a GGa), using niche‐based models. Up to a third of the 227 Proteaceae taxa are uplisted (become more threatened) by up to three threat categories if future threats as predicted for 2020 are included, and the proportion of threatened Proteaceae taxa rises on average by 9% (range 2–16%), depending on the scenario. With increasing severity of the scenarios, the proportion of Critically Endangered taxa increases from about 1% to 7% and almost 2% of the 227 Proteaceae taxa become Extinct because of climate change. Overall, climate change has the most severe effects on the Proteaceae, but land use change also severely affects some taxa. Most of the threatened taxa occur in low‐lying coastal areas, but the proportion of threatened taxa changes considerably in inland mountain areas if future threats are included. Our approach gives important insights into how, where and when future threats could affect species persistence and can in a sense be seen as a test of the value of planned interventions for conservation.  相似文献   

15.
Input data, analytical methods and biogeography of Elegia (Restionaceae)   总被引:1,自引:0,他引:1  
Aim The aim of this paper is to determine the optimal methods for delimiting areas of endemism for Elegia L. (Restionaceae), an endemic genus of the Cape Floristic Region. We assess two methods of scoring the data (presence–absence in regular grids, or in irregular eco‐geographical regions) and three methods for locating biogeographical centres or areas of endemism, and evaluate one method for locating biotic elements. Location The Cape Floristic Region (CFR), South Africa. Methods The distribution of all 48 species of Elegia was mapped as presence–absence data on a quarter‐degree grid and on broad habitat units (eco‐geographical areas). Three methods to delimit areas of endemism were applied: parsimony analysis of endemism (PAE), phenetic cluster analysis, and NDM (‘end em ism’). In addition, we used presence–absence clustering (‘Prabclus’) to delimit biotic elements. The performances of these methods in elucidating the geographical patterns in Elegia were compared, for both types of input data, by evaluating their efficacy in maximizing the proportion of endemics and the number of areas of endemism. Results Eco‐geographical areas perform better than quarter‐degree grids. The eco‐geographical areas are potentially more likely to track the distribution of species. The phenetic approach performed best in terms of its ability to delimit areas of endemism in the study area. The species richness and the richness of range‐restricted species are each highest in the south‐western part of the CFR, decreasing to the north and east. The phytogeographical centres identified in the present study are the northern mountains, the southern mountains (inclusive of the Riviersonderend Mountains and the Cape Peninsula), the Langeberg range, the south coast, the Cape flats, and the west coast. Main conclusions This study demonstrates that (1) eco‐geographical areas should be preferred over a grid overlay in the study of biogeographical patterns, (2) phenetic clustering is the most suitable analytical method for finding areas of endemism, and (3) delimiting biotic elements does not contribute to an understanding of the biogeographical pattern in Elegia. The areas of endemism in Elegia are largely similar to those described in other studies, but there are many detailed differences.  相似文献   

16.
Aim Vicariance has played a major role in the evolution of the southern rock agama, Agama atra (Reptilia: Agamidae), and it is hypothesized that habitat shifts will affect small‐scale patterns of gene flow. The Cape Floristic Region (CFR) is known for high levels of diversity and endemism; thus we set out to investigate whether genetic structuring of CFR populations of A. atra corresponds to regional environmental shifts. Location Cape Fold Mountains and the Cape Floristic Region of South Africa. Methods The phylogeographical structure of 116 individuals of A. atra was determined by making use of 988 characters derived from two mitochondrial DNA fragments (control region and the NADH dehydrogenase subunit 2 coding region, ND2). Most animals originated from the CFR, but to gain a better understanding of the processes and patterns of dispersal within the species, 17 additional specimens from outside the CFR were also included and analysed in a phylogenetic context. Results Parsimony and Bayesian analyses revealed four distinct CFR clades (Cape clades) associated with geography. Phylogenetic analyses suggest that populations of A. atra in the CFR region are not entirely isolated from other populations, because some individuals from outside the CFR were nested within the four main Cape clades. The combined mitochondrial DNA data set revealed 59 distinct haplotypes in the CFR. Analysis of molecular variance (amova ) confirmed the high degree of genetic structure among the Cape clades, with more than 75% of the genetic variation found among the geographical areas. A spatial amova suggested that a ‘central clade’ originally defined as one of the four Cape clades may contain several additional populations. The main cladogenesis of A. atra within the CFR is estimated to have taken place c. 0.64–2.36 Ma. Main conclusions Agama atra shows at least four distinct genetic provinces within the CFR region, which highlights the conservation importance of this biologically diverse area. The dates of separation among the clades coincide well with the documented Pleistocene climate fluctuations, which might have contributed towards the isolation among lineages; the congruent genetic structure of A. atra with other CFR taxa further supports vicariance as a main isolating factor.  相似文献   

17.
Male Tete veld rats Aethomys ineptus and Namaqua rock mice A. namaquensis were independently subjected to a long photoperiod of 16L:8D and a short photoperiod of 8L:16D for 3 months in order to assess the effect of photoperiod on testicular function. Testicular parameters examined included testicular mass relative to body mass, testicular volume, seminiferous tubule diameters and changes in circulating plasma testosterone concentration. On a long day (LD) length, both species exhibited significantly higher testicular mass relative to body mass and testicular volume, and larger seminiferous tubule diameters. Circulating plasma testosterone concentrations in A. ineptus were not significantly different between the two photoperiodic treatments, but A. namaquensis showed significantly higher testosterone concentration in males on a LD length than on a short day (SD) length. This suggests that both A. ineptus and A. namaquensis are photoperiodically responsive to LDs.  相似文献   

18.
Aim Previous genetic studies of African savanna ungulates have indicated Pleistocene refugial areas in East and southern Africa, and recent palynological, palaeovegetation and fossil studies have suggested the presence of a long‐standing refugium in the south and a mosaic of refugia in the east. Phylogeographic analysis of the common eland antelope, Taurotragus oryx (Bovidae), was used to assess these hypotheses and the existence of genetic signatures of Pleistocene climate change. Location The sub‐Saharan savanna biome of East and southern Africa. Methods Mitochondrial DNA control‐region fragments (414 bp) from 122 individuals of common eland were analysed to elucidate the phylogeography, genetic diversity, spatial population structuring, historical migration and demographic history of the species. The phylogeographic split among major genetic lineages was dated using Bayesian coalescent‐based methods and a calibrated fossil root of 1.6 Ma for the split between the common eland and the giant eland, Taurotragus derbianus. Results Two major phylogeographic lineages comprising East and southern African localities, respectively, were separated by a net nucleotide distance of 4.7%. A third intermediate lineage comprised only three haplotypes, from Zimbabwe in southern Africa. The estimated mutation rate of 0.097 Myr?1 revealed a more recent common ancestor for the eastern lineage (0.21 Ma; 0.07–0.37) than for the southern lineage (0.35 Ma; 0.10–0.62). Compared with the latter, the eastern lineage showed pronounced geographic structuring, lower overall nucleotide diversity, higher population differentiation, and isolation‐by‐distance among populations. Main conclusions The data support the hypothesis of Pleistocene refugia occurring in East and southern Africa. In agreement with palynological, palaeovegetation and fossil studies, our data strongly support the presence of a longer‐standing population in the south and a mosaic of Pleistocene refugia in the east, verifying the efficacy of genetic tools in addressing such questions. The more recent origin of the common eland inhabiting East Africa could result from colonization following extinction from the region. Only two other dated African ungulate phylogenies have been published, applying different methods, and the similarity of dates obtained from the three distinct approaches indicates a significant event c. 200 ka, which left a strong genetic signature across a range of ungulate taxa.  相似文献   

19.
Superficial similarities among unrelated species are often a result of convergent evolution and can cause considerable taxonomic confusion. A case in point is Satyrium eurycalcaratum , described here as a new species, which has been confused with several other Satyrium spp. with similar long‐spurred, white flowers. A phylogenetic analysis, based on molecular data, indicated that S. eurycalcaratum is not closely related to any of the species with which it has been previously confused. A comparative analysis of morphological characters in the seven South African Satyrium spp. with long‐spurred, white flowers showed that each of these, including S. eurycalcaratum , is characterized by a unique combination of traits. Despite the similarity in pollination syndrome characters, such as spur length and flower colour, variation in rostellum structure was particularly pronounced and four distinctive forms were present. There was no phylogenetic signal in patterns of interspecific rostellum variation, as some closely related species had different rostella, whereas some distantly related species shared similar rostellum structures. We therefore conclude that the use of rostellum traits in conjunction with phylogenetic evidence can resolve species delimitations among orchid species that share the same pollination syndrome. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 417–430.  相似文献   

20.
Rayner  Nancy A. 《Hydrobiologia》1994,292(1):97-104
Three new species of Tropodiaptomus from southern Africa are described, Tropodiaptomus zambeziensis, T. bhangazii, and T. capriviensis. Type localities are a rice paddy on the Zambezi river delta, a coastal lake in Zululand, and temporary pools in Bushmanland and the eastern Caprivi in Namibia. Speciation of Tropodiaptomus in the warm inland waters of southern Africa is much more extensive than was formerly realised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号