首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of wildland weeds that serve as alternate hosts for insect pests has not been directly examined for the potential to sustain pest populations or facilitate pest outbreaks. The development of weed biological control programmes is also complicated by weed species that are closely related to economically important or native plants, especially rare or special status species. In recent surveys in southern California, USA, we found a newly introduced insect pest of cole crops, Bagrada hilaris Burmeister (Bagrada bug), feeding on Brassicaceae weeds in riparian areas adjacent to agricultural fields where cole crops are routinely grown. Insect populations grew to levels well over action thresholds and caused severe damage to populations of the invasive weed, Lepidium latifolium (perennial pepperweed). The numerical response of B. hilaris on L. latifolium and other Brassicaceae weeds in natural areas may pose a significant challenge to effectively managing pest populations in crops. However, the accidental introduction of this insect provides the opportunity to examine plant–insect interactions with important implications for development of biologically based control methods for weeds.  相似文献   

2.
  1. Economic pests jeopardize agricultural production worldwide. Classical biological control, comprising the import of exotic natural enemies to control target pest populations, has a successful history in many countries. However, little is known about how these natural enemies contribute to the suppression of pests that are yet to arrive. Biotic resistance theory, though, posits that communities resist species invasions as a result of natural enemies.
  2. We assessed the potential of the resident exotic parasitoid wasp fauna in New Zealand (intentionally‐introduced biological control agents and unintentionally‐introduced species) to provide biotic resistance against possible future pests. A dataset was generated containing resident exotic parasitoid species (Ichneumonoidea: Braconidae; Ichneumonidae) in New Zealand, as well as their known global host ranges and the pest status of host species, to infer the potential for biotic resistance.
  3. The known exotic ichneumonoid fauna in New Zealand comprises 65 species. These species associate with 107 host species in New Zealand, of which 54 species are pests. However, the current exotic species could potentially suppress 442 pest species not yet occurring in New Zealand.
  4. This approach could be used to inform pest management programmes worldwide. Future research should consider how biotic resistance from the established parasitoid fauna can be used to inform specific decisions with respect to classical biological control.
  相似文献   

3.
The pest termites of South America: taxonomy, distribution and status   总被引:3,自引:0,他引:3  
Abstract: A total of 77 species of termites have been reported as structural or agricultural pests in South America. These records are reviewed, with indication of the damage they cause, their pest status, distribution and sources of information. Among these, 40 species are reported as structural pests, 53 species as agricultural pests and 15 species as both. However, only 18 species are considered major pests and the status of most of the others is uncertain. Uncertainty about status is much higher among agricultural pests. Specific taxonomic problems are discussed and distribution maps of the main pest genera and species are presented. The most important structural pests are the introduced Coptotermes havilandi and Cryptotermes brevis and the native Nasutitermes corniger. Reticulitermes was introduced into Uruguay and Chile, where it is the only serious pest. The main agricultural pests are Heterotermes spp., Nasutitermes spp., Cornitermes spp., Procornitermes spp. and Syntermes spp., and the most affected crops are sugarcane, upland rice and eucalyptus.  相似文献   

4.
Harmful non-indigenous species (NIS) impose great economic and environmental impacts globally, but little is known about their impacts in Southeast Asia. Lack of knowledge of the magnitude of the problem hinders the allocation of appropriate resources for NIS prevention and management. We used benefit-cost analysis embedded in a Monte-Carlo simulation model and analysed economic and environmental impacts of NIS in the region to estimate the total burden of NIS in Southeast Asia. The total annual loss caused by NIS to agriculture, human health and the environment in Southeast Asia is estimated to be US$33.5 billion (5th and 95th percentile US$25.8–39.8 billion). Losses and costs to the agricultural sector are estimated to be nearly 90% of the total (US$23.4–33.9 billion), while the annual costs associated with human health and the environment are US$1.85 billion (US$1.4–2.5 billion) and US$2.1 billion (US$0.9–3.3 billion), respectively, although these estimates are based on conservative assumptions. We demonstrate that the economic and environmental impacts of NIS in low and middle-income regions can be considerable and that further measures, such as the adoption of regional risk assessment protocols to inform decisions on prevention and control of NIS in Southeast Asia, could be beneficial.  相似文献   

5.
The economic loss due to pest attack in stored commodities is a serious problem worldwide. About 200 insect species attack stored commodities. These insect pests are responsible for quantitative and qualitative losses in cereal grains. Among the stored grain pests, Angoumois grain moth, Sitotroga cerealella is considered as common, top of the list and most destructive pest of cereal grains. Its infestation starts in the standing crop and continues in storage. Although there are many control strategies, our need is some effective, cheap and readily available strategy for safe storage. This review presents different ways by which S. cerealella can be controlled. In this paper, a list of approaches is given which are used to improve the protection of stored grains against S. cerealella attack. These approaches include use of edible oils, containers, synthetic chemicals, agricultural waste materials, plant derivatives, bacterial protoxins, biopesticides, biocontrol enhancers and semiochemicals. If these tactics are followed as combined strategies in a compatible manner, they can provide us an integrated pest management programme for the efficient control of S. cerealella in cereal grains.  相似文献   

6.
Since the 1860s, Australian insects have steadily colonized eucalypts in New Zealand. The rate of colonization has increased markedly over the last two decades. This increase may be related to increasing trade between the two countries. Currently there are 26 specialist eucalypt insect species and approximately 31 polyphagous insect species that can feed on Eucalyptus in New Zealand. The specialist eucalypt insects endemic to Australia have generally caused more damage than polyphagous or native insects. Eucalypt‐specific insects are dominated by sap sucking bugs, particularly psyllids, and defoliating Coleoptera and Lepidoptera. In some cases the major insect pest species have been those that are only occasional pests in Australia, for example Gonipterus scutellatus, Ctenarytaina eucalypti, Eriococcus coriaceus and Phylacteophaga froggatti. Some important insect pests have been rare, or even not described from Australia, prior to their appearance as a pest in New Zealand, for example Paropsis charybdis and Ophelimus eucalypti. Invading eucalypt insects are more likely to establish in the Auckland region than anywhere else in New Zealand.  相似文献   

7.
In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes(landscape and climate) and economic damage caused by six main insect pests during 1951–2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller(Cnaphalocrocis medinalis Guenee) and armyworm(Mythimna separate(Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.  相似文献   

8.
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East‐Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high‐level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high‐level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East‐Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil.  相似文献   

9.
The recent increase in agricultural commodities from abroad and travelers due to the economic growth and globalization in Korea has resulted in an increase in invasive alien insect species establishing in Korea. When “alien” is defined as species introduced after the beginning of the Greater Korean Empire Era (1897), 171 insect species are considered invasive alien species. On average, 0.85 alien insect species have become established each year for the last 40 years, and 76.6% of the alien insect species are economic agricultural pests. The annual invasion rate and the pest interceptions from imported cut flowers, planting material, and vegetables have been increasing rapidly. Traveler's baggage is an important pathway for fruit flies. Most of the alien pests that were first found in Japan were confirmed in Korea at least 3 years later until the 1990s, but the pattern has been reversed since the 2000s. Thus, continuous information sharing with neighboring countries such as Japan and China is needed to develop a system for early detection and prompt action against invading insect species. Thus, we introduce and summarize the present status of invasive alien insect species in Korea.  相似文献   

10.
Baculoviruses are a group of viruses that infect invertebrates and that have been used worldwide as a biopesticide against several insect pests of the Order Lepidoptera. In Brazil, the baculovirus Spodoptera frugiperda multicapsid nucleopolyhedrovirus (SfMNPV; Baculoviridae) has been used experimentally to control S. frugiperda (Lepidoptera: Noctuidae), an important insect pest of corn (maize) fields and other crops. Baculoviruses can be produced either in insect larvae or in cell culture bioreactors. A major limitation to the in vitro production of baculoviruses is the rapid generation of mutants when the virus undergoes passages in cell culture. In order to evaluate the potential of in vitro methods of producing SfMNPV on a large-scale, we have multiplied a Brazilian isolate of this virus in cell culture. Extensive formation of few polyhedra mutants was observed after only two passages in Sf9 cells.  相似文献   

11.
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is one of the most damaging insect pests globally, causing estimated global economic losses of over 3 billion US dollars annually. Crops most affected include cotton, tomato, soybean, grain crops such as corn and sorghum, chickpea and other pulses. Adults of this species possess strong migratory abilities (>2000 km), high fecundity and rapid reproductive rates; completing 4–6 generations per year in most cropping regions. Furthermore, the larvae are polyphagous, with a wide and diverse host range and possess the ability to enter diapause in order to survive adverse climatic conditions. At present, it is distributed across most of Oceania, Asia, Africa and southern Europe and has recently spread to South America. Various control measures have been trialled or proposed for the treatment of this pest, including synthetic insecticides, phytopesticides, microbial pesticides, macro-biocontrol agents (both parasitoids and predators) and the development of genetically modified crops (e.g. Bt cotton). Successful control necessitates the use of an integrated pest management (IPM) approach, wherein biological, chemical and physical control measures are combined for the greatest control efficacy.  相似文献   

12.
Insect conservation and pest management   总被引:1,自引:0,他引:1  
The issue of insect conservation in pest management has many conflicting aspects. For instance, it is desirable to conserve a pest residue in order to maintain natural enemy population and it is imperative to conserve natural enemies. However, conservation of pest species is not relevant if the pest species is an exotic invader and a candidate for eradication, mainly because eradication, if successful, achieves only regional extinction. Conservation of native pests depends, to a large extent, on whether the species is a direct pest of a high value crop or an indirect pest with an acceptable economic injury level. In this paper, integrated pest management is defined in terms of sustainable agriculture and the conservation of biodiversity, and give five premises that stress the level of disturbance of agricultural communities and the dynamics of pest status for arthropod species in the community. The possible impacts of the main integrated pest management tactics on arthropod conservation are tabulated and the results reached stress that diversification of agricultural systems through maximum use of native plants should benefit both integrated pest management and regional arthropod conservation.  相似文献   

13.
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.  相似文献   

14.
In New Zealand, two introduced scolytid beetles, Hylastes ater and Hylurgus ligniperda (Curculionidae: Scolytinae) are pests in pine plantations. Investigation of the naturally occurring pathogens of these exotic pests revealed that both are attacked by Beauveria caledonica, a species originally isolated and described from soil in Scotland. The isolates in New Zealand were identical in morphology and conserved DNA region (rDNA, elongation factor α) sequence to isolates held in the USDA-ARS insect pathogens culture collection. In bioassay, the B. caledonica isolates were highly pathogenic to adults of H. ligniperda and larvae of Tenebrio molitor. Sporulation was observed on cadavers, confirming the species can utilise the cadavers. As both species were likely to have been introduced to New Zealand from Europe, a search was made for B. caledonica in the northern UK and Ireland. The fungus was found as a naturally-occurring pathogen of the weevil pest, Hylobius abietis (Curculionidae: Scolytinae), developing in spruce and other beetles in forests in both regions.  相似文献   

15.
Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), is a South American plant that is highly invasive in Florida. The impact of insect herbivores on the performance of Brazilian peppertree was evaluated at two locations in Florida using an insecticide exclusion method. Although 38 species of insect herbivores were collected on the invasive tree, there were no differences in growth or reproductive output of insecticide protected and unprotected trees, providing evidence that insect feeding had no measurable impact on tree performance. The majority of insects collected on Brazilian peppertree were generalists, and several were serious agricultural pests.  相似文献   

16.
Non-native insect pests are often responsible for important damage to native and agricultural plant hosts. Since Drosophila suzukii Matsumura (Diptera: Drosophilidae) has become an important pest in North America and Europe (i.e., in 2008), the global production of soft thin-skinned fruits has faced severe production losses. In the southern Neotropical region, however, the first record of D. suzukii occurred in 2013 in the south of Brazil. It has also been recorded in Uruguay, Argentina, and Chile. Despite its recent occurrence in the southern Neotropical region, the fast dispersion of D. suzukii has inspired local research efforts in an attempt to mitigate the consequences of this insect pest invasion. In this forum, we explore the current status of D. suzukii in southern Neotropical regions, discussing its future perspectives. Additionally, we attempt to draft activities and a research agenda that may help to mitigate the losses caused by D. suzukii in native and commercial soft-skinned fruits produced in this region. Currently, D. suzukii appears to be well established in the south of Brazil, but considering the entire southern Neotropical region, the invasion panorama is still underinvestigated. The lack of studies and regulatory actions against D. suzukii has contributed to the invasion success of this species in this region. Considering several peculiarities of both the pest biology and the environmental of this region, the authors advocate for the need of intensive and integrative studies toward the development and implementation of area-wide integrated pest management programs against D. suzukii in the southern Neotropical region.  相似文献   

17.
Colonizing species often go through genetic bottlenecks when new territories are invaded. The South American continent has been recently colonized by a generalist African drosophilid, Zaprionus indianus, which has become an agricultural pest in Brazil in the last five years. In this paper we used allozyme electrophoresis to estimate levels of genetic differentiation of Z. indianus collected from sites 4 300 km apart in Brazil. We also compared the level of polymorphism of the Brazilian populations with that found in laboratory strains from Africa and Asia, to verify if a significant decrease in gene variability has taken place during the invasion process. The populations were polymorphic for three out of the 11 loci investigated. Genetic distances and FST indices among Brazilian populations were small and generally non significant, suggesting a colonization from one single propagule followed by a rapid demographic expansion. Ancestral and old populations from Africa and Asia were slightly more heterozygous than those from Brazil. Compared to other drosophilids, Z. indianus appears to be characterized by a low proportion (25%) of polymorphic loci. We suggest that the propagule introduced to Brazil had a sufficient size to carry almost all the polymorphism from the (unknown) origin population, although not the precise allelic frequencies.  相似文献   

18.
Five species of noctuid moths, Helicoverpa armigera, H. punctigera, H. assulta, H. zea, and H. gelotopoeon, are major agricultural pests inhabiting various and often overlapping global distributions. Visual identification of these species requires a great deal of expertise and misidentification can have repercussions for pest management and agricultural biosecurity. Here, we report on the complete mitochondrial genomes of H. assulta assulta and H. assulta afra, H. gelotopoeon, H. punctigera, H. zea, and H. armigera armigera and H. armigera conferta’ assembled from high‐throughput sequencing data. This study significantly increases the mitogenome resources for these five agricultural pests with sequences assembled from across different continents, including an H. armigera individual collected from an invasive population in Brazil. We infer the phylogenetic relationships of these five Helicoverpa species based on the 13 mitochondrial DNA protein‐coding genes (PCG's) and show that two publicly available mitogenomes of H. assulta ( KP015198 and KR149448 ) have been misidentified or incorrectly assembled. We further consolidate existing PCR‐RFLP methods to cover all five Helicoverpa pest species, providing an updated method that will contribute to species differentiation and to future monitoring efforts of Helicoverpa pest species across different continents. We discuss the value of Helicoverpa mitogenomes to assist with species identification in view of the context of the rapid spread of H. armigera in the New World. With this work, we provide the molecular resources necessary for future studies of the evolutionary history and ecology of these species.  相似文献   

19.
Massive fish kills caused by bloom‐forming species of the Raphidophyceae occur in many marine coastal areas and often cause significant economic losses. The ultrastructure and phylogeny of marine raphidophytes from the Brazilian coast have not been fully analyzed. Here, we present the first combined morphological and genetic characterization of raphidophyte strains from the Brazilian coast. Ten strains of four raphidophyte species (Chattonella subsalsa, C. antiqua, Heterosigma akashiwo, and Fibrocapsa japonica) were characterized based on morphology (including ultrastructure) and LSU rDNA sequences. Chattonella subsalsa and C. antiqua formed two distinct genetic clades. We found that the cell size is the only phenotypic feature separating C. subsalsa and C. antiqua strains from Brazil, whereas traditional characteristics used for species separation in the genus Chattonella (i.e., tail size, chloroplast presence in the tail, ‘oboe‐shaped’ mucocysts, and presence of thylakoids in the pyrenoid matrix) were not sufficiently discriminative, due to their overlapping in the two taxa. The phylogenetic analysis indicated intra‐specific geographic differences among C. subsalsa sequences, with two subclades: one formed by isolates from Brazil, USA, and Iran, and another by a sequence from the Adriatic Sea (Italy). Fibrocapsa japonica also showed intra‐specific geographic differences, with a sequence from a Brazilian strain grouped with strains from Japan, Australia, and Germany, all of them distinct from the Italian isolates. This is the first combined morphological and phylogenetic analysis of raphidophytes from the South Atlantic. Our findings broaden knowledge of the biodiversity of this important bloom‐forming algal group.  相似文献   

20.
Climate change could profoundly affect the status of agricultural insect pests. Several approaches have been used to predict how the temperature and precipitation changes could modify the abundances, distributions or status of insect pests. In this article it is demonstrated how the use of simple models, such as Ricker’s classic equation, including a mechanistic representation of the influence of exogenous forces may improve our predictive capacity of the dynamic behaviour of insect populations. Using data from classical experiments in population ecology, we evaluate how temperature and humidity influence the density of two stored grain insect pest, Tribolium confusum and Callosobruchus chinensis, and then, using the A2 and B2 scenarios proposed by the Intergovernmental Panel on Climate Change and the previous modelling, we develop predictions over the future pest status of T. confusum along South America austral region, and specifically for eight cities in the continental Chilean territory. Tribolium confusum and C. chinensis show qualitatively different responses to the exogenous forcing of temperature and humidity, respectively. Our simulations predict a change in the equilibrium density of T. confusum from 10 to 14% under the moderate B2 scenario and 12 to 22% under the extreme A2 scenario to the period, 2071–2100. Both results imply a severe change in the pest status of this species in the southern region. This study illustrates how the use of theoretically based models may improve our predictive capacity. This approach provides an opportunity to examine the link between invasive species and climate change and how new suitable habitat may become available for species whose niche space is limited in some degree by climatic conditions. The use of different scenarios allows us to examine the sensitivity of the predictions, and to improve the communication with the general public and decision‐makers; a key aspect in integrated pest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号