首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Phytogeographical relations of the Andean dry valleys of Bolivia   总被引:1,自引:0,他引:1  
Aim The objective of this study is to examine the phytogeographical affinities of the Andean dry valleys of Bolivia in order to contribute to a better understanding of the Andean dry flora's distribution, origin and diversity. Particular emphasis is given to the analysis of the floristic connections of this flora with more austral parts of South America. Location The dry valleys of Bolivia are located in the Andes of the southern half of the country, at elevations between 1300 and 3200 m. Methods An extensive floristic list compiled by the author to evaluate plant diversity in these Andean regions was used as the base for this study. To accomplish this, all recorded genera and species were assigned, respectively, to 11 and 12 phytogeographical elements established previously by the author. Two phytogeographical spectra were thus obtained and analysed. Results At the genus level, the Andean dry valleys of Bolivia are clearly dominated by genera that have widespread distributions (cosmoplitan and subtropical genera). Many of these reached the Andes from the lowland region of the Chaco. At species level, Andean elements constitute more than 60% of the species total, most of which are restricted to the central‐southern Andes. This suggests that Chaco‐related and Andean genera had considerable levels of speciation in these valleys. Many genera and more than half the species have their northernmost distribution in the dry valleys of Bolivia, thereby underlining strong relationships with central‐southern South America (mainly Argentina, Paraguay and southern Brazil). The data supports the belief of the existence, in central‐southern Peru, of a floristic disjunction in dry to arid environments that separates a tropical dry flora north of this limit from a dry subtropical/warm temperate flora south of it. Main conclusions The Andean dry valleys of Bolivia are diverse plant communities with high levels of endemism (c. 18% of the species). The species of this region are more related to those present in central‐southern South America than to the flora of northern South America that ranges southwards to Peru. Many of the species have restricted distributions in the dry Andes of Bolivia and Argentina, and many genera of these dry valleys have their northernmost distribution in Bolivia/southern Peru, too. The data point to high levels of speciation also in the central Andes.  相似文献   

2.
Phylogeographic studies often infer historical demographic processes underlying species distributions based on patterns of neutral genetic variation, but spatial variation in functionally important genes can provide additional insights about biogeographic history allowing for inferences about the potential role of adaptation in geographic range evolution. Integrating data from neutral markers and genes involved in oxygen (O2)‐transport physiology, we test historical hypotheses about colonization and gene flow across low‐ and high‐altitude regions in the Ruddy Duck (Oxyura jamaicensis), a widely distributed species in the New World. Using multilocus analyses that for the first time include populations from the Colombian Andes, we also examined the hypothesis that Ruddy Duck populations from northern South America are of hybrid origin. We found that neutral and functional genes appear to have moved into the Colombian Andes from both North America and southern South America, and that high‐altitude Colombian populations do not exhibit evidence of adaptation to hypoxia in hemoglobin genes. Therefore, the biogeographic history of Ruddy Ducks is likely more complex than previously inferred. Our new data raise questions about the hypothesis that adaptation via natural selection to high‐altitude conditions through amino acid replacements in the hemoglobin protein allowed Ruddy Ducks to disperse south along the high Andes into southern South America. The existence of shared genetic variation with populations from both North America and southern South America as well as private alleles suggests that the Colombian population of Ruddy Ducks may be of old hybrid origin. This study illustrates the breadth of inferences one can make by combining data from nuclear and functionally important loci in phylogeography, and underscores the importance of complete range‐wide sampling to study species history in complex landscapes.  相似文献   

3.
Hybridization with a close relative, the North American ruddy duck (Oxyura jamaicensis), is a major problem for the conservation of the endangered white‐headed duck (Oxyura leucocephala). We report the development of 11 microsatellite markers that can facilitate the identification of hybrids as well as the study of the population structure of both species across their distributions. These markers were tested in 63 white‐headed ducks and 50 ruddy ducks and show a larger diversity in the latter species.  相似文献   

4.
The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above‐ground biomass and developed species specific and multispecies power‐law allometric equations for four tussock grass species in Peruvian high altitude grasslands, considering maximum height (hmax), elliptical crown area and elliptical basal area. Although these predictors are commonly used among allometric literature, they have not previously been used for estimating puna grassland biomass. Total above‐ground biomass was estimated to be of 6.7 ± 0.2 Mg ha?1 (3.35 ± 0.1 Mg C ha?1). All allometric relationships fitted to similar power‐law models, with basal area and crown area as the most influential predictors, although the fit improved when tussock maximum height was included in the model. Multispecies allometries gave better fits than the other species‐specific equations, but the best equation should be used depending on the species composition of the target grassland. These allometric equations provide an useful approach for measuring above‐ground biomass and productivity in high‐altitude Andean grasslands, where destructive sampling can be challenging and difficult because of the remoteness of the area. These equations can be also applicable for establishing above‐ground reference levels before the adoption of carbon compensation mechanisms or grassland management policies, as well as for measuring the impact of land use changes in Andean ecosystems.  相似文献   

5.
Aim This contribution treats the phytogeography of the contemporary campos de altitude flora, with a focus on patterns at the level of genus. Comparative analysis using data from 17 other sites in Latin America is used to describe phytogeographical patterns at the continental scale. Results are combined with those of previous publications to shed light on the biogeographical origins of contemporary floristic patterns in the high mountains of south‐east Brazil. Location The campos de altitude are a series of cool‐humid, mountaintop grass‐ and shrublands found above elevations of 1800–2000 m in south‐east Brazil, within the biome of the Atlantic Forest. Methods Vascular floras are compiled for the three best‐known campos de altitude sites, and for 17 other highland and lowland locations in Latin America. Floras are binned into phytogeographical groups based on centres of diversity/origin. Floristic and geographical distances are calculated for all location‐pairs; Mantel tests are used to test for relationships between patterns in geographical distance, and floristic and climatic similarity. Multivariate statistics are carried out on the similarity matrices for all genera, and for each phytogeographical group. Predominant life‐forms, pollination and dispersal syndromes are determined for each genus in the campos de altitude flora, and proportional comparisons are made between phytogeographical groups. Supporting evidence from previously published literature is used to interpret analytical results. Results Two‐thirds of the genera in the campos de altitude are of tropical ancestry; the remainder are of temperate‐zone or cosmopolitan ancestry. Most campos de altitude genera are phanerophytes and hemicryptophytes, insect pollinated, and wind or gravity dispersed, but there are significant differences in the distribution of these traits among phytogeographical groups. The campos de altitude show stronger floristic similarities with other Brazilian mountain sites and distant Andean sites than with nearby low‐ and middle‐elevation sites; these similarities are best explained by climatic similarities. Floristic similarities among sites for temperate genera are better explained by ‘sinuous’ distance (e.g. measured along the spines of mountain ranges) than by direct distance; similarities in tropical genera are more related to direct distance. Different phytogeographical groups appear to be responding to different climatic signals. Main conclusions Many taxa currently living at the summits of the south‐east Brazilian Highlands trace their ancestry to temperate latitudes. Patterns of endemism and diversity in the south‐east Brazilian mountains point to climatically driven allopatry as a principal mechanism for speciation. The tropical component of the campos de altitude flora is primarily derived from drier, highland environments of the Brazilian interior; the temperate component rises in importance with elevation, but never reaches the levels seen in the tropical Andes. Most temperate taxa in the campos de altitude appear to have arrived via migration through favourable habitat rather than by recent, long‐distance dispersal. At least 11% of the plant species in the campos de altitude study sites are directly shared with the Andes. Palynofloras show that the campos de altitude have significantly contracted over the past 10,000 years, as regional temperatures have warmed and become more humid.  相似文献   

6.
The Andes, the world's longest mountain chain, harbours great taxonomic and ecological diversity. Despite their young age, the tropical Andes are highly diverse due to recent geological uplift. Speciation either followed the orogeny closely or occurred after the Andean uplift, as a result of subsequent climatic changes. Different scenarios have been proposed to explain the diversification of high Andean taxa. The Melanoplinae grasshopper Ponderacris Ronderos & Cigliano is endemic to the eastern slopes of the Andes of Peru and Bolivia, mostly distributed between 1000 and 4000 m above sea level. Diversification in several montane habitats of Bolivia and Peru allows tests via cladistic analysis of distinct possible geographic modes of speciation. Eight species are recognized, with three described here as new with revised diagnostic morphological characters provided: Ponderacris carlcarbonelli sp.n., P. chulumaniensis sp.n. and P. amboroensis sp.n. Cladistic analyses of 15 species (8 ingroup and 7 outgroup) and 38 morphological characters, under equal and implied weighting, confirm the monophyly of Ponderacris. Characters from the external morphology and colour pattern provided less phylogenetic information than did the male abdominal terminalia and phallic complex. Species distributed in the Peruvian Andes constituted a monophyletic group, whereas those from the Bolivian Andes formed a basal paraphyletic grade. Dispersal–vicariance analysis resulted in one ancestral distribution reconstruction indicating that the most recent common ancestor was distributed in the Lower Montane Yungas of Bolivia. Eleven dispersal and one vicariant events are postulated, with a South‐to‐North speciation pattern coincident with progressive Andean uplift. Vicariance could relate to fragmentation of montane forest during the dry intervals of the late Cenozoic. From the Bolivian area, ancestral Peruvian Ponderacris may have dispersed northward, coinciding with the rise of the Andes. Ten of 11 dispersal events occurred at terminal taxa and are likely to be recent. However, diversification of Ponderacris cannot be explained solely by the South‐to‐North speciation hypothesis, but may also include both vicariance and dispersal across barriers influenced by Pleistocene climatic cycles.  相似文献   

7.
Aim The tropical Andes are a world biodiversity hotspot. With diverse biomes and dramatic, geologically recent mountain uplift, they offer a system to study the relative contributions of geological and biome history to species richness. There are preliminary indications that historical species assembly in the Andes has been influenced by physiographical heterogeneity and that distinct biomes have evolved in relative isolation despite physical proximity. Here we test this ‘Andean biotic separation hypothesis’ by focusing on the low‐elevation, seasonally dry tropical forest (SDTF) biome to determine whether patterns of plant diversification within the SDTF differ from those in mid‐ and high‐elevation biomes. Location Tropical Andes, South America. Methods Densely sampled time‐calibrated phylogenies for five legume genera (Amicia, Coursetia, Cyathostegia, Mimosa and Poissonia) containing species endemic to the Andean SDTF biome were used to investigate divergence times and levels of geographical structure. Geographical structure was measured using isolation‐by‐distance methods. Meta‐analysis of time‐calibrated phylogenies of Andean plant groups was used to compare the pattern and tempo of endemic species diversification between the major Andean biomes. Results Long‐term persistence of SDTF in the Andes is suggested by old stem ages (5–27 Ma) of endemic genera/clades within genera, and deep divergences coupled with strong geographical structure among and within species. Comparison of species diversification patterns among different biomes shows that the relatively old, geographically confined pattern of species diversification in SDTF contrasts with the high‐elevation grasslands that show rapid and recent radiations driven by ecological opportunities. Main conclusions The SDTF biome has a long history in the Andes. We suggest that the diverse SDTF flora has been assembled gradually over the past c. 19 Ma from lineages exhibiting strong phylogenetic niche conservatism. These patterns suggest that Andean SDTFs have formed stable and strongly isolated ‘islands’ despite the upheavals of Andean uplift. Indeed, the Andean SDTFs may represent some of the most isolated and evolutionarily persistent continental plant communities, similar in many respects to floras of remote oceanic islands.  相似文献   

8.
Native to North America, ruddy ducks Oxyura jamaicensis now occur in 21 countries in the western Palaearctic (including Iceland) and their expanding population threatens the native white-headed duck, Oxyura leucocephala, through hybridization and possibly competition for food and nest sites. We used mitochondrial DNA sequences and nuclear microsatellites to test whether the European ruddy duck population is descended solely from the captive population in the UK, which traces to seven individuals imported from the USA in 1948, or, alternatively, has been augmented by natural dispersal of birds from North America. Limited genetic diversity in the European population is consistent with a founder population as small as seven birds. In addition, shifts in allele frequencies at several loci, presumably due to genetic drift in the founding population, result in significant differentiation between the European and North American populations. Despite the recent separation of these populations, almost all individuals could be unambiguously assigned based on their composite genotypes, to one of two distinct populations, one comprising all of the European ruddy ducks we sampled (including those from Iceland and captive birds in the UK) and the other comprising all North American samples. Our results confirm that the European ruddy duck population is likely to derive solely from the captive population in the UK and we find no evidence of recent arrivals from North America or of admixture between ruddy ducks from Europe and North America.  相似文献   

9.
The ruddy duck (Oxyura jamaicensis), a stifftail native to the Americas, was introduced to the UK in the 1950s and has since been recorded in 22 western Palearctic countries. By 2000, the UK population peaked at nearly 6,000 individuals. In 1991, hybridisation with the native and globally threatened (IUCN Endangered) white-headed duck (Oxyura leucocephala), a stifftail restricted to the Mediterranean and Asia, was recorded in Spain and culling of hybrids and ruddy ducks began. Here we report on a series of genetic studies that have enabled and supported management decisions to the benefit of the white-headed duck. First, genetic data confirmed that these are two distinct species, each of which is more closely related to other stifftail species. Second, molecular studies indicated that ruddy ducks in Spain, Iceland and elsewhere in Europe were of captive origin and not descendants from vagrants from their native North America. Third, genetic methods were used to distinguish among different hybrid generations in Spain and detected no ruddy duck introgression in birds identified morphologically as white-headed ducks. Collectively, these results supported management decisions to eradicate ruddy ducks from Europe. Subsequently, a control programme reduced the UK population by over 95 % by 2010, and the arrival of ruddy ducks to Spain decreased from 21 birds in 2003 to two sightings in 2010–2011. However, increased efforts to control small ruddy duck populations elsewhere in Europe and Morocco are still required to ensure conservation of the white-headed duck. This case of invasion by hybridization demonstrates that successful control is feasible given early detection followed by a rapid response plan; it also shows the contribution of research to management and that to guarantee the conservation of an endangered native species action may be required in countries outside its distribution range.  相似文献   

10.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

11.
Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.  相似文献   

12.
Aim The Alstroemeriaceae is among 28 angiosperm families shared between South America, New Zealand and/or Australia; here, we examine the biogeography of Alstroemeriaceae to better understand the climatic and geological settings for its diversification in the Neotropics. We also compare Alstroemeriaceae with the four other Southern Hemisphere families that expanded from Patagonia to the equator, to infer what factors may have permitted such expansions across biomes. Location South America, Central America, Australia and New Zealand. Methods Three chloroplast genes, one mitochondrial gene and one nuclear DNA region were sequenced for 153 accessions representing 125 of the 200 species of Alstroemeriaceae from throughout the distribution range; 25 outgroup taxa were included to securely infer evolutionary directions and be able to use both ingroup and outgroup fossil constraints. A relaxed‐clock model relied on up to three fossil calibrations, and ancestral ranges were inferred using statistical dispersal–vicariance analysis (S‐DIVA). Southern Hemisphere disjunctions in the flowering plants were reviewed for key biological traits, divergence times, migration directions and habitats occupied. Results The obtained chronogram and ancestral area reconstruction imply that the most recent common ancestor of Colchicaceae and Alstroemeriaceae lived in the Late Cretaceous in southern South America/Australasia, the ancestral region of Alstroemeriaceae may have been South America/Antarctica, and a single New Zealand species is due to recent dispersal from South America. Chilean Alstroemeria diversified with the uplift of the Patagonian Andes c. 18 Ma, and a hummingbird‐pollinated clade (Bomarea) reached the northern Andes at 11–13 Ma. The South American Arid Diagonal (SAAD), a belt of arid vegetation caused by the onset of the Andean rain shadow 14–15 Ma, isolated a Brazilian clade of Alstroemeria from a basal Chilean/Argentinean grade. Main conclusions Only Alstroemeriaceae, Calceolariaceae, Cunoniaceae, Escalloniaceae and Proteaceae have expanded and diversified from Patagonia far into tropical latitudes. All migrated northwards along the Andes, but also reached south‐eastern Brazil, in most cases after the origin of the SAAD. Our results from Alstroemeria now suggest that the SAAD may have been a major ecological barrier in southern South America.  相似文献   

13.
Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.  相似文献   

14.
Small‐eared shrews (Mammalia, Soricidae) of the New World genus Cryptotis are distributed from eastern North America to the northern Andes of South America. One well‐defined clade in this genus is the Central American Cryptotis mexicana group, whose members are set off from other species in the genus by their variably broader fore feet and more elongate and broadened fore claws. Two species in the C. mexicana group, Cryptotis goodwini Jackson and Cryptotis griseoventris Jackson, inhabit highlands in Guatemala and southern Mexico and are presumed to be sister species whose primary distinguishing feature is the larger body size of C. goodwini. To better characterize these species and confirm the identification of recently‐collected specimens, we obtained digital X‐ray images of the manus from large series of dried skins of both species. Measurements of the metacarpals and phalanges successfully separated most specimens of C. goodwini and C. griseoventris. These measurements also show that the fore feet of C. griseoventris from Chiapas, Mexico, are morphologically distinct from those of members of the species inhabiting Guatemala. Univariate, bivariate, and multivariate analyses indicate that fore foot characters are more conservative within species of the C. mexicana group than are cranio‐mandibular characters. Patterns of evolution of fore foot characters that superficially appear to be linear gradations are actually more complex, illustrating individual evolutionary trajectories. No claim to original US government works. Journal compilation © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 118–134.  相似文献   

15.
Aim The lizard genus Proctoporus Tschudi, 1845 was used as a model to test the South‐to‐North Speciation Hypothesis (SNSH) for species groups occurring in the Andes Mountains of South America. This hypothesis proposes that speciation of high Andean taxa followed a south‐to‐north pattern, generally coinciding with the progression of final uplift of the Andes. According to SNSH, a phylogenetic hypothesis of relationships of a taxonomic group occurring in the high Andes would show a branching pattern in which the southernmost species diverged first, followed by the more northern species, and so on in a northerly pattern. Location The central and northern Andes Mountains in South America. Methods A phylogenetic hypothesis was reconstructed for all species of the lizard genus Proctoporus by examining the external morphology of 341 individuals. This phylogeny was then examined to determine monophyly of the genus, distribution patterns of species groups, and congruence with SNSH. Results The genus Proctoporus did appear to be monophyletic and, therefore, it was valid to use this group to assess SNSH. The southernmost species were found to be the most basal, which was consistent with SNSH. The species occurring in the northern Andes did not exactly match the SNSH prediction. The Venezuelan and Trinidadian species did appear to be highly derived, as predicted by the hypothesis, but the Ecuadorian and Colombian species did not form a particular pattern in relation to the hypothesis. Main conclusions The SNSH does appear to have predictive power with regard to large‐scale distribution patterns. The finer‐scale patterns of speciation in the Andes, however, appear to be a more complex phenomenon that cannot be fully explained by a simple hypothesis. It is important to have a testable hypothesis in hand with which to compare data from disparate species groups. The incorporation of phylogenetic data of other high Andean taxa with similar distribution patterns is necessary to determine the full utility of SNSH in explaining evolutionary patterns in the Andes of South America.  相似文献   

16.
Aim Understanding large‐scale patterns of beta diversity and endemism is essential for ecoregional conservation planning. We present a study of spatial patterns of faunal diversification and biogeographical relationships in the Andean region of Colombia. This region has a great geomorphological complexity, as it is formed by several mountain ranges with different geologic origins. We hypothesize that this complexity results in a high turnover in species composition among subregions. Location The Andean region of Colombia, including the Santa Marta and Macarena mountain ranges. Methods The region was divided into subregions, represented by the eastern and western slopes of each of the three Andean cordilleras, the Cauca and Magdalena valley bottoms, and the peripheral mountain ranges of Perijá, Macarena and Sierra Nevada de Santa Marta. Species lists for five animal taxa (rodents, bats, birds, frogs and butterflies) were compiled for each subregion and similarities in species composition were determined by cluster analysis. To explore biogeographical relationships, species were classified into one of four distributional categories: endemic, tropical Andean, Andean‐Central American and wide continental distribution. Results The highest species richness in the region was found in the Pacific and eastern versants of the Andes, and the lowest in the Cauca and Magdalena valley bottoms. Inter‐Andean slopes were intermediate in species richness. However, when species richness was calculated per unit area, the most diverse regions were the Santa Marta and Macarena ranges, the Cauca Valley watershed and the Pacific slope. Although each taxonomic group had a different branching pattern, dendrograms indicated five common subregional clusterings: (1) Perijá‐Sierra Nevada, (2) the Pacific slope, (3) the eastern Andean slope, (4) the Cauca and Magdalena valley bottoms, and (5) the inter‐Andean slopes. Clustering patterns of inter‐Andean slopes varied among taxa. In birds, bats and rodents, grouping was by opposite slopes of the same valley, whereas frogs were grouped by mountain ranges and butterflies by valleys and their respective slopes. Seventy‐five per cent of species in all taxa were found in less than five subregions. The fauna of the Magdalena and Cauca valley bottoms was composed mostly of lowland species with wide geographical distributions, whereas the cordilleran fauna was mostly restricted to the tropical Andes. Main conclusions The western and eastern versants of the Andes have the highest species richness, but are also the largest subregions. On a per unit area basis, the peripheral ranges (Santa Marta and Macarena) are the richest, followed by the western portion of the Andes (the Cauca Valley watershed and the Pacific versant). Clustering patterns in dendrograms suggest two major patterns of differentiation of the Andean fauna: one elevational (lowlands vs. highlands) and one horizontal (among ranges and/or slopes). Biogeographical affinities of the inter‐Andean valley bottoms are with the lowland faunas of tropical America. In contrast, Andean faunas diversified locally, resulting in the evolution of a large number of endemic species, particularly among the less vagile taxa. Three different main branches of Andean fauna can be recognized, one confined to the Pacific, another to the eastern (Amazonian‐Llanos) versant of the Andes, and the third one composed by the inter‐Andean slopes of the Cauca and Magdalena valleys. The identification of five main biogeographical units in the Andean region of Colombia has important implications for the conservation of the regional biota. Conservation initiatives that seek to preserve representative samples of the regional biodiversity should take into account the patterns of diversification described here, and the evolutionary processes that gave rise to these patterns.  相似文献   

17.
History of the montane forests of the northern Andes   总被引:2,自引:0,他引:2  
From the vascular plant genera of the tropical Andean montane forests about 65% have a tropical-neotropical, 15% tropical-Andean, 5% amphi-pacific (Malayo-American), 5% Austral-antarctic and 10% Holarctic distribution. The explosive evolution of Andean centred taxa probably started in the lower Tertiary from tropical Gondwana stock, when in the area of the present day Andes, locally there may have been hills up to 1 000m. With the final upheaval between the Late Miocene and Late Pliocene, extensive areas with a montane climate were created and populated from the low mountain flora by evolutionary radiation. Taxa of Austral-antarctic origin migrated along the Andean chain to the tropics. At the same time the formation of the Panama isthmus connected N. and S. America, and enabled many plants to enter the tropical Andes from the north. First to cross were tropical to subtropical and warm-temperate species from the Tertiary Laurasian flora that had migrated southward during the period of Miocene cooling, taking refuge in the montane tropics. Because the same happened in SE. Asia there is a good number of amphi-pacific taxa known as fossils from Tertiary Laurasia but largely extinct in the present-day Holarctic (e.g.,Trigonobalanus). Later to cross were cool-temperate to cold elements that still exist in the Holarctic (e.g.,Alnus andQuercus).  相似文献   

18.
Nine species of the saxicolous lichen genus Umbilicaria from Ecuador are reported and a key is provided: U. africana, U. aprina, U. cinereorufescens, U. decussata, U. dendrophora, U. haplocarpa, U. leprosa, U. nylanderiana and U. vellea. The species diversity of this genus on the equatorial high mountains of South America is low compared to North America and Eurasia, but similar to that found on high African peaks close to the equator. The species mostly belong to a high‐alpine element with worldwide distribution. Two species belong to an Andean endemic element, viz U. haplocarpa and U. leprosa. The low diversity and low percentage of endemism may reflect the fairly recent uplift of the Andes and the comparatively small geographic extent of the alpine Andean biota. The dense rainforests of Ecuador leave few suitable open rock habitats for the establishment of these light‐craving lichens below the tree‐line (4000–4200 m a.s.l.), and thus their equatorial habitat is almost exclusively restricted to the alpine zone between the tree‐line and the snow‐line (4700–4800 m a.s.l.). The equatorial species mainly reproduce asexually by thalloconidia, and the adaptive significance of this type of reproduction in high altitude habitats is discussed.  相似文献   

19.
Spatial variation in the environment can lead to divergent selection between populations occupying different parts of a species’ range, and ultimately lead to population divergence. The colonization of new areas can thus facilitate divergence in beneficial traits, yet with little differentiation at neutral genetic markers. We investigated genetic and phenotypic patterns of divergence between low‐ and high‐altitude populations of cinnamon teal inhabiting normoxic and hypoxic regions in the Andes and adjacent lowlands of South America. Cinnamon teal showed strong divergence in body size (PC1; PST= 0.56) and exhibited significant frequency differences in a single nonsynonymous α‐hemoglobin amino acid polymorphism (Asn/Ser‐α9; FST= 0.60) between environmental extremes, despite considerable admixture of mtDNA and intron loci (FST= 0.004–0.168). Inferences of strong population segregation were further supported by the observation of few mismatched individuals in either environmental extreme. Coalescent analyses indicated that the highlands were most likely colonized from lowland regions but following divergence, gene flow has been asymmetric from the highlands into the lowlands. Multiple selection pressures associated with high‐altitude habitats, including cold and hypoxia, have likely shaped morphological and genetic divergence within South American cinnamon teal populations.  相似文献   

20.
Question: Factors influencing seedling establishment are known to vary between open sites and those protected by plant cover. In many desert regions, protected microhabitats below shrubs are essential for establishment of many cactus species. Very little is known about these factors for Andean cacti and how the importance of vegetation cover varies with cactus species. Are Andean cacti associated more frequently to vegetation cover than to open ground? Are they associated to certain shrub species? Is the distributional pattern in relation to cover similar for different cactus species? In what microhabitat (below or away from shrubs) are cactus seeds more abundant? These questions are addressed for the case of an Andean semi‐desert. Location: Semi‐arid tropical Andes, La Paz department, Bolivia. Methods: We examined 132 isolated shrubs = 50 cm along a line across two microhabitats: areas below and away from shrubs/trees. Shrub crown size was measured. The among‐shrub samples were taken from open spaces contiguous to each of the sampled shrubs. In both microhabitats, all cactus species were recorded. The cardinal direction of the cacti was also registered. Correlation between canopy diameter and number of beneficiaries was evaluated for Prosopis flexuosa. The cactus seed bank in each microhabitat was also studied. Results and Conclusions: The four cactus species found behaved differently in relation to shrub canopies. These distributional differences could be due to differences in growth form. Columnar cacti apparently need the shade of shrubs. Only the columnar species is able to grow near the base of the tallest nurse species. The opuntioid cacti studied seem more facultative: although apparently preferring shrub un‐der‐canopies, they are able to establish in open ground. The globose cactus is the most indifferent to the presence of plant cover. These patterns parallel others found in North America. The capacity of different cacti to appear in open spaces could be related to vegetative propagation, and not necessarily to seedling tolerance of heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号