首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Tomato (Lycopersicon esculentum var MP‐1) plants overexpressing Arabidopsis hexokinase 1 (AtHXK1) exhibited high hexokinase (HXK) activity in correlation with drastic phenotypic modifications in fruit. Transgenic fruit and seeds were reduced in size. Reduction in fruit size was due to decreased cell expansion, which could not be corrected by perfusion with sucrose (Suc). Neither could wild type (WT) fruit and seed size be obtained by grafting of transgenic flowers onto WT shoots. Starch and hexose contents were lower but organic and amino acids were higher in transgenic fruit. Lower respiratory rates measured in vitro accompanied by even lower ATP levels and ATP/ADP ratios indicated metabolic perturbations that may explain, in part, reduced fruit and seed size.  相似文献   

2.
3.
4.
5.
Hexokinase II is an enzyme central to glucose metabolism and glucose repression in the yeast Saccharomyces cerevisiae. Deletion of HXK2, the gene which encodes hexokinase II, dramatically changed the physiology of S. cerevisiae. The hxk2-null mutant strain displayed fully oxidative growth at high glucose concentrations in early exponential batch cultures, resulting in an initial absence of fermentative products such as ethanol, a postponed and shortened diauxic shift, and higher biomass yields. Several intracellular changes were associated with the deletion of hexokinase II. The hxk2 mutant had a higher mitochondrial H+-ATPase activity and a lower pyruvate decarboxylase activity, which coincided with an intracellular accumulation of pyruvate in the hxk2 mutant. The concentrations of adenine nucleotides, glucose-6-phosphate, and fructose-6-phosphate are comparable in the wild type and the hxk2 mutant. In contrast, the concentration of fructose-1,6-bisphosphate, an allosteric activator of pyruvate kinase, is clearly lower in the hxk2 mutant than in the wild type. The results suggest a redirection of carbon flux in the hxk2 mutant to the production of biomass as a consequence of reduced glucose repression.  相似文献   

6.
Saccharomyces cerevisiae has two homologous hexokinases, I and II; they are 78% identical at the amino acid level. Either enzyme allows yeast cells to ferment fructose. Mutant strains without any hexokinase can still grow on glucose by using a third enzyme, glucokinase. Hexokinase II has been implicated in the control of catabolite repression in yeasts. We constructed null mutations in both hexokinase genes, HXK1 and HXK2, and studied their effect on the fermentation of fructose and on catabolite repression of three different genes in yeasts: SUC2, CYC1, and GAL10. The results indicate that hxk1 or hxk2 single null mutants can ferment fructose but that hxk1 hxk2 double mutants cannot. The hxk2 single mutant, as well as the double mutant, failed to show catabolite repression in all three systems, while the hxk1 null mutation had little or no effect on catabolite repression.  相似文献   

7.
The HXK2 gene product has an important role in controlling carbon catabolite repression in Saccharomyces cerevisiae. We have raised specific antibodies against the hexokinase PII protein and have demonstrated that it is a 58 kDa phosphoprotein with protein kinase activity. The predicted amino acid sequence of the HXK2 gene product has significant homology to the conserved catalytic domain of mammalian and yeast protein kinases. Protein kinase activity was located in a different domain of the protein from the hexose-phosphorylating activity. The hexokinase PII protein level remained unchanged in P2T22D mutant cells (hxk1 HXK2 glk1) growing in a complex medium with glucose. The protein kinase activity of hexokinase PII is regulated by the glucose concentration of the culture medium. Exit from the carbon catabolite repression phase and entry into derepression phase may be controlled, in part, by modulation of the 58 kDa protein kinase activity by changes in cyclic AMP concentration.  相似文献   

8.
9.
Summary. Mammalian hexokinase (HXK) is found at the outer mitochondrial membrane, exposed to mitochondrial oxygen- and nitrogen-radicals. Given the important role of this enzyme in metabolic pathways and diseases, the effect of S-nitrosoglutathione (GSNO) on HXK A structure and activity was studied. To focus on the catalytic domain, yeast HXK A was used because it has a significant homology to the mammalian domain that contains both the regulatory and catalytic sites. Biologically relevant [GSNO]/[HXK] caused a significant decrease in Vmax with glucose (but not with fructose), along with oxidation of 5 Met and nitration of 4 Tyr. Preincubation of HXK with glucose abrogated the effect of GSNO whereas fructose was ineffective. These results are interpreted by considering the tight binding of glucose to the enzyme as opposed to that of fructose. The segment comprised from amino acids 304 to 306 contained the most modifications. Given that this sequence is highly conserved in HXK from various species, a decline in activity is expected when a high-affinity substrate is presented. Considering that changes in primary structure are envisioned at high [GSNO]/[HXK] ratios, like those present under normal conditions, it could be hypothesized that the high concentration of hexokinase present in fast growing tumors may serve not only to sustain high glycolysis rates, but also to minimize protein damage that might result in activity decline, compromising energy metabolism.  相似文献   

10.
Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants.  相似文献   

11.
Cho JI  Ryoo N  Ko S  Lee SK  Lee J  Jung KH  Lee YH  Bhoo SH  Winderickx J  An G  Hahn TR  Jeon JS 《Planta》2006,224(3):598-611
Hexokinase (HXK) is a dual-function enzyme that both phosphorylates hexose to form hexose 6−phosphate and plays an important role in sugar sensing and signaling. To investigate the roles of hexokinases in rice growth and development, we analyzed rice sequence databases and isolated ten rice hexokinase cDNAs, OsHXK1 (Oryza sativa Hexokinase 1) through OsHXK10. With the exception of the single-exon gene OsHXK1, the OsHXKs all have a highly conserved genomic structure consisting of nine exons and eight introns. Gene expression profiling revealed that OsHXK2 through OsHXK9 are expressed ubiquitously in various organs, whereas OsHXK10 expression is pollen-specific. Sugars induced the expression of three OsHXKs, OsHXK2, OsHXK5, and OsHXK6, in excised leaves, while suppressing OsHXK7 expression in excised leaves and immature seeds. The hexokinase activity of the OsHXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). OsHXK4 was able to complement this mutant only after the chloroplast-transit peptide was removed. The subcellular localization of OsHXK4 and OsHXK7, observed with green fluorescent protein (GFP) fusion constructs, indicated that OsHXK4 is a plastid-stroma-targeted hexokinase while OsHXK7 localizes to the cytosol.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
13.
14.
Several hundred new mutations in the gene (HXK2) encoding hexokinase II of Saccharomyces cerevisiae were isolated, and a subset of them was mapped, resulting in a fine-structure genetic map. Among the mutations that were sequenced, 35 were independent missense mutations. The mutations were obtained by mutagenesis of cloned HXK2 DNA carried on a low-copy-number plasmid vector and screened for a number of different phenotypes in yeast strains bearing chromosomal hxk1 and hxk2 null mutations. Some of these mutants were characterized both in vivo and in vitro; they displayed a wide spectrum of residual hexokinase activities, as indicated by three assays: in vitro enzyme activity, ability to grow on glucose and fructose, and ability to repress invertase production when growing on glucose. Of those that failed to support growth on fructose, only a small minority made normal-size, stable, and inactive protein. Analysis of the amino acid changes in these mutants in light of the crystallographically determined three-dimensional structure of hexokinase II suggests important roles in structure or catalysis for six amino acid residues, only two of which are near the active site.  相似文献   

15.
Hexokinase II is an enzyme central to glucose metabolism and glucose repression in the yeast Saccharomyces cerevisiae. Deletion of HXK2, the gene which encodes hexokinase II, dramatically changed the physiology of S. cerevisiae. The hxk2-null mutant strain displayed fully oxidative growth at high glucose concentrations in early exponential batch cultures, resulting in an initial absence of fermentative products such as ethanol, a postponed and shortened diauxic shift, and higher biomass yields. Several intracellular changes were associated with the deletion of hexokinase II. The hxk2 mutant had a higher mitochondrial H(+)-ATPase activity and a lower pyruvate decarboxylase activity, which coincided with an intracellular accumulation of pyruvate in the hxk2 mutant. The concentrations of adenine nucleotides, glucose-6-phosphate, and fructose-6-phosphate are comparable in the wild type and the hxk2 mutant. In contrast, the concentration of fructose-1,6-bisphosphate, an allosteric activator of pyruvate kinase, is clearly lower in the hxk2 mutant than in the wild type. The results suggest a redirection of carbon flux in the hxk2 mutant to the production of biomass as a consequence of reduced glucose repression.  相似文献   

16.
17.
The yeast Yarrowia lipolytica produces an extracellular lipase encoded by the LIP2 gene. However, very little is known about the mechanisms controlling its expression, especially on glucose media. In this work, the involvement of hexokinase Hxk1 in the glucose catabolite repression of LIP2 was investigated in a lipase overproducing mutant less sensitive to glucose repression. This mutant has a reduced capacity to phosphorylate hexose compared with the wild-type strain, but no differences could be observed between the HXK1 sequences in the two isolates. This suggested that the reduced phosphorylating activity of the mutant strain probably resulted from a modification in the level of HXK1 expression. However, overexpression of the HXK1 gene in this mutant led to a decrease of both LIP2 induction and extracellular lipase activity, suggesting that the hexokinase is involved in the glucose catabolite repression of LIP2 in Y lipolytica.  相似文献   

18.
19.
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH‐dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2‐Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild‐type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC‐promoted growth, changes in root architecture, shifts in expression of VC‐responsive CK‐ and ABA‐regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrcΔ2cp plants with reduced 2‐Cys peroxiredoxin expression. OxiTRAQ‐based quantitative and site‐specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis‐related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.  相似文献   

20.
Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and invertase activity showed a strong inverse correlation, with a few exceptions attributable to very unstable hexokinase II proteins. The in vivo hexokinase II activity was determined by measuring growth rates, using fructose as a carbon source. This in vivo hexokinase II activity was similarly inversely correlated with invertase activity. Several hxk2 alleles were transferred to multicopy plasmids to study the effects of increasing the amounts of mutant proteins. The cells that contained the multicopy plasmids exhibited less invertase and more hexokinase activity, further strengthening the correlation. These results strongly support the hypothesis that the phosphorylation activity of hexokinase II is correlated with glucose repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号