首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.

Background and Aims

Leersia oryzoides, a wild relative of rice (Oryza sativa), may carry potential seed-borne bacterial endophytes which could be used to enhance growth of rice. We hypothesized that seed-associated bacteria from L. oryzoides would be compatible with rice and promote seedling growth, development, and survival.

Methods

We isolated bacteria from seed of L. oryzoides and checked compatibility with rice as well as Bermuda grass seeds for seedling growth promotion. Internal colonisation of bacteria into root cells was observed by ROS staining and microscopic observation. Growth promoting bacteria were evaluated for IAA production, phosphate solubilization and antifungal activities.

Results

Overall, ten bacteria were found to be growth promoting in rice seedlings with effects including restoration of root gravitropic response, increased root and shoot growth, and stimulation of root hair formation. All bacteria were identified by 16S rDNA sequencing. Six bacteria were found to become intracellular in root parenchyma and root hairs in rice and in Bermuda grass seedlings. Six bacteria were able to produce IAA in LB broth with highest (47.06 ± 1.99 μg ml?1) by LTE3 (Pantoea hericii). Nine isolates solubilized phosphate and inhibited at least one soil borne fungal pathogen.

Conclusions

Seed bacteria of L. oryzoides are compatible with rice. Many of these bacteria become intracellular, induce root gravitropic response, increase root and shoot growth, and stimulate root hair formation in both rice and Bermuda grass seedlings. Presence of bacteria protects seedlings from soil pathogens during seedling establishment. This research suggests that bioprospecting microbes on near relatives of rice and other crop plants may be a viable strategy to obtain microbes to improve cultivation of crops.
  相似文献   

2.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

3.
4.
Since their discovery, germin and germin-like proteins (GLPs) were found to be associated with salt stress along with other physiological roles. Although a number of GLP family members showed spatio-temporal changes in expressional up-regulation or down-regulation upon exposure to salt stress across plant species, very little is known about any rice GLP member in relation to salt stress. Rice germin-like protein 1 (OsGLP1), belongs to “Cupin” superfamily, is a plant glycoprotein and is associated with the plant cell wall. Our previous studies on endogenous down-regulation of OsGLP1 in rice and heterologous expression in tobacco documented that the OsGLP1 possessing superoxide dismutase activity is involved in cell wall cross-linking and fungal disease resistance in plants. In the present study, the transgenic rice lines having reduced OsGLP1 expression were analyzed in advanced generation for deciphering the involvement of OsGLP1 under salt stress. OsGLP1 gene-silencing construct integated transgenic lines were confirmed by Southern hybridization and RNA-interfernce (RNAi) mediated gene-silencing of the transgenic rice lines was confirmed by northern blot analysis. The expression of endogenous OsGLP1 protein level was found to be reduced in salt sensitive indica rice cultivar Badshahbhog following salt stress. Additionally, the RNAi-mediated OsGLP1 gene-silencing in transgenic rice lines resulted improved salt tolerance as compared to the untransformed ones during seed germination, initial establishment, early seedling growth and callus proliferation. Salt tolerance nature of the OsGLP1 gene-silenced plants at early stages of growth and development depicted the negative correlation between the OsGLP1 expression and salt tolerance of rice.  相似文献   

5.
Salt stress has multiple damaging effects on plants including physiological damage, reduced growth, and productivity. Plant growth-promoting rhizobacteria (PGPR) are one of the valuable options to mitigate the negative effects of this stress. In the present study, native bacteria from chickpea’s rhizosphere were isolated, and checked for their salt tolerance and plant growth-promoting attributes (phosphate (P) solubilization, siderophores, indole-3-acetic acid (IAA) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production). One isolate, subsequently identified as Pantoea dispersa, showed appreciable production of IAA (218.3 µg/ml) and siderophores (60.33% SU), P-solubilization (3.64 µg/ml) and ACC deaminase activity (207.45 nmol/mg/h) in the presence of 150 mM NaCl, under laboratory conditions. Salt stress in uninoculated chickpea (GPF2 cultivar) plants induced high accumulation of Na+ ions (3.86 mg g?1 dw) in the leaves, along with significant reduction in K+ uptake, membrane integrity, chlorophyll concentration, and leaf water content, thus resulting in impaired growth of the plant and yield (pods and seeds) in a salt concentration-dependent manner. The damage due to salt stress was restored significantly in plants inoculated with P. dispersa. A significant improvement in biomass (32–34%), pods number (31–34.5%), seeds number (32–35.7%), pods weight (30–32.6%), and seeds weight (27–35%) per plant occurred in salt stress-affected plants, which was associated with significant reduction in Na+ uptake, reduced membrane damage, significantly improved leaf water content, chlorophyll content, and K+ uptake. This study suggests for the first time that native P. dispersa strain PSB3 can be used to alleviate the negative effects of salt stress on chickpea plants and holds the potential to be used as a biofertilizer.  相似文献   

6.
In this work, we have overexpressed a vesicle trafficking protein, Rab7, from a stress-tolerant plant, Pennisetum glaucum, in a high-yielding but stress-sensitive rice variety Pusa Basmati-1 (PB-1). The transgenic rice plants were tested for tolerance against salinity and drought stress. The transgenic plants showed considerable tolerance at the vegetative stage against both salinity (200 mM NaCl) and drought stress (up to 12 days after withdrawing water). The protection against salt and drought stress may be by regulating Na+ ion homeostasis, as the transgenic plants showed altered expression of multiple transporter genes, including OsNHX1, OsNHX2, OsSOS1, OsVHA, and OsGLRs. In addition, decreased generation and maintenance of lesser reactive oxygen species (ROS), with maintenance of chloroplast grana and photosynthetic machinery was observed. When evaluated for reproductive growth, 89–96 % of seed setting was maintained in transgenic plants during drought stress; however, under salt stress, a 33–53 % decrease in seed setting was observed. These results indicate that PgRab7 overexpression in rice confers differential tolerance at the seed setting stage during salinity and drought stress and could be a favored target for raising drought-tolerant crops.  相似文献   

7.
DNA helicase (PDH45) from the pea plant (Pisum sativum) is a member of the DEAD box protein family and plays a vital regulatory role in saline stress tolerance in plants. We previously reported that over-expression of PDH45 gene confers both seedling and reproductive stage salinity tolerance to a Bangladeshi rice landrace, Binnatoa (BA). In this study, transgenic BA-containing PDH45 (♂) was crossed with two different farmer-popular BRRI rice varieties (♀), BR28 and BR47, in a contained net house. F1 plants positive for the transgene and having recipient phenotype were advanced from F1 to F5. Expression of the PDH45 gene was detected in all generations. The expression level of PDH45 was 200-fold higher in the donor compared to the two recipient genotypes but without any effect on their salt stress tolerance ability in various assays. Under 120 mM NaCl stress at seedling stage, all rice genotypes showed vigorous growth, higher chlorophyll content, lower electrolyte leakage and lower LDS (Leaf Damage Score) compared to their corresponding wild types. At the reproductive stage under continuous salinity stress at 80 mM NaCl, the cross-bred lines BR28 and BR47 showed significantly better spikelet fertility and yield per plant, which were two- and 2.5-folds, respectively, than their corresponding wild types. The PDH45 transgene was observed to increase the expression of 6 salt stress-related downstream genes at 150 mM NaCl stress to similar differential degrees in the donor and recipient genotypes. However, the expression of OsLEA was significantly higher in transgenic BR28 compared to transgenic BR47, where the latter shows comparatively higher salt tolerance. The study shows stability of transgene expression across generations. It also demonstrates that there may be an effect of background genotype on transgene expression. Moreover, some downstream effects of the transgene may also be genotype-specific.  相似文献   

8.
9.
Soil salinity is a wide-reaching environmental problem that lowers the yield of commercial crops such as maize, rice, and sugarcane. In this study, we examined the effect of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic diazotrophic Enterobacter sp. EN-21 on growth promotion, salt tolerance, and root colonization of sugarcane. Enterobacter sp. EN-21 inoculated and uninoculated sugarcane plants were grown in a greenhouse with and without 200 mM NaCl for 7 days. Sugarcane inoculated with Enterobacter sp. EN-21 substantially increased in total plant length, dry, and fresh weights in both non-salt and salt treatments. Under the salt–stress condition, Enterobacter sp. EN-21 significantly reduced proline, malondialdehyde, ethylene emission, and Na+ accumulation in sugarcane but markedly increased total chlorophyll content and K+ accumulation. The gfp-tagged Enterobacter sp. EN-21 was observed to colonize early at the root cap, root hairs, and lateral root junctions of sugarcane and later localized in intercellular spaces. Altogether the results of this study indicated that ACC deaminase-producing Enterobacter sp. EN-21 is a true endophyte and able to promote growth and enhance salt tolerance in sugarcane.  相似文献   

10.
11.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

12.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

13.
Legumes can host rhizobia and mycorrhizal fungi, and this triple symbiosis might be exploited to improve saline soil fertility. Therefore, a greater understanding of the interaction of rhizobia and arbuscular mycorrhizal fungus during legume growth in saline soil is required. We investigated the efficiency of salt tolerance conferred by rhizobia in mycorrhizal Sesbania cannabina. Greenhouse experiments were conducted in which S. cannabina plants inoculated with Glomus mosseae BGC NM03D (GM), and two rhizobia strains Agrobacterium pusense YIC4105 (4105) and Neorhizobium huautlense YIC4083 (4083), were exposed to 100 and 200 mM NaCl. Under 200 mM NaCl stress, plants inoculated with 4105, rather than 4083, showed significant increases in shoot and root dry mass compared with non-inoculated plants. Simultaneously, a significant increase over GM-inoculated plants in mycorrhizal colonization and dependency was recorded for 4105 + GM-inoculated plants compared with 4083 + GM-inoculated plants. In addition, under NaCl stress, significant increases in the number and mass of nodules, nitrogenase activity, and leghemoglobin content of nodules occurred in 4105 + GM-inoculated plants compared with 4083 + GM-inoculated plants. Furthermore, the activities of antioxidant enzymes in rhizobia-inoculated plants were significantly higher in the GM + 4105 group than the 4083 + GM group. The malondialdehyde content of plants from the 4105 + GM group was significantly lower than in the 4083 + GM group. Thus, the results revealed a synergistic relationship among the 4105 and GM in alleviating salt stress in S. cannabina. Salt-tolerant rhizobia might improve the salinity tolerance of S. cannabina by enhancing the antioxidant system.  相似文献   

14.
The insecticidal cry genes of Bacillus thuringiensis (Bt) have been successfully used for development of insect resistant transgenic rice plants. In this study, a novel cry2AX1 gene consisting a sequence of cry2Aa and cry2Ac gene driven by rice rbcS promoter was introduced into a rice cultivar, ASD16. Among 27 putative rice transformants, 20 plants were found to be positive for cry2AX1 gene. The expression of Cry2AX1 protein in transgenic rice plants ranged from 5.95 to 122.40 ng/g of fresh leaf tissue. Stable integration of the transgene was confirmed in putative transformants of rice by Southern blot hybridization analysis. Insect bioassay on T0 transgenic rice plants against rice leaffolder (Cnaphalocrosis medinalis) recorded larval mortality up to 83.33 %. Stable inheritance and expression of cry2AX1 gene in T1 progenies was demonstrated using Southern and ELISA. The detached leaf bit bioassay with selected T1 plants showed 83.33–90.00 % mortality against C. medinalis. The whole plant bioassay for T1 plants with rice leaffolder showed significant level of resistance even at a lower level of Cry2AX1 expression varying from 131 to 158 ng/g fresh leaf tissue during tillering stage.  相似文献   

15.
Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus, which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.  相似文献   

16.
The plant specific DREPP proteins have been shown to bind Ca2+ and regulate the N-myristoylation signaling and microtubule polymerization in Arabidopsis thaliana. The information about DREPP proteins in other plants is, however, scarce. In the present study, we isolated the DREPP gene from a halophytic grass, Sporobolus virginicus, and tested whether the gene was involved in alkaline salt stress responses. The SvDREPP1 was cloned from S. virginicus by RACE methods. The isolated gene showed high homology to DREPP homologs from C4 grasses, Setaria italica, and Panicum hallii as well as rice (OsDREPP1). The encoded protein contained 202 amino acid residues. It was expressed in E. coli, and its biochemical properties were studied. It was observed that SvDREPP1 was not only Ca2+-binding protein, but also bind to calmodulin and microtubules. The SvDREPP1 mRNA expression in plants grown under alkaline salt stress was upregulated by 3.5 times over the control in leaf tissues after 48-h treatment, whereas it was increased for 6.0 times in the root tissues at 36 h. The data suggests the importance of SvDREPP1 in regulating alkali salt stress responses in the leaf tissues.  相似文献   

17.
The role of spore associated bacteria of arbuscular mycorrhizal fungi (AMF) in improving plant growth and alleviating salt stress is a potential area to explore. In the present study, 22 bacteria isolated from the spore walls of AMF were identified to contain 1-aminocyclopropane-1-carboxylate deaminase. These were tested for their ability to improve seed germination and alleviate salt stress in the early growth of maize. Among the isolates, 19 bacteria that were able to grow at 4?% NaCl were used for germination assay. Two bacteria and seven bacteria significantly improved maize seed germination at 100 mM NaCl and 200 mM NaCl, respectively. Based on the presence of plant growth promoting (PGP) characters and the ability to improve seed germination, five strains were chosen for further experiments. At 0 mM NaCl, all the strains were able to increase maize shoot and root growth significantly. At 25 mM NaCl, except for Bacillus aryabhattai S210B15, all the strains were able to increase shoot and root growth significantly. At 50 mM NaCl, Bacillus aryabhattai S110B3 and B. aryabhattai S210B15 significantly improved shoot length, whereas, Pseudomonas koreensis S2CB35 and B. aryabhattai S210B15 significantly increased root length. Although salinity increased ethylene production in maize, bacterial inoculation significantly reduced the ethylene level at 0, 25 and 50 mM NaCl. Among the five strains, only P. koreensis S2CB35 showed the presence of PGP functional traits of nifH, acdS and nodA genes.  相似文献   

18.
OsLEA3 is a late embryogenesis abundant group 3 protein. The OsLEA3 gene located on chromosome 5 of rice (Oryza sativa L.) includes one intron and two exons and encodes a protein of 200 amino acid residues. Expression analysis revealed that OsLEA3 was induced by water deficit and salt stress. Overexpression of the OsLEA3 gene in the transgenic rice plants allowed us to test the role of the OsLEA3 protein in stress tolerance. The accumulation of the OsLEA3 protein in the vegetative tissues of transgenic rice plants enhanced their tolerance to water deficit and salt stress. These results demonstrate a role for the OsLEA3 protein in stress protection and suggest the potential of the OsLEA3 gene for genetic engineering of stress tolerance.  相似文献   

19.
In the current investigation, the biological activities of essential oils obtained from organs of Ruta chalepensis plants grown under salt stress (0, 50 and 100 mM NaCl) were analyzed. Their chemical composition was often investigated by GC/FID and GC–MS and the antimicrobial activities towards eight bacteria (Salmonella All, Salmonella K, Escherichia coli 45AG, Escherichia coli 45AI, Staphylococcus aureus 9402, Staphylococcus aureus 02B145, Listeria 477 and Pseudomonas aeruginosa ATCC 10145) and five fungi strains (Aspergillus, Saccharomycee crvisiale, Streptomyces griseus, Fusarium solani and Penicillium thomii) were studied. Results revealed that salt increased essential oil production in leaves at 50 and 100 mM NaCl. A total of 20 compounds were identified in leaves, undecan-2-one, nonan-2-one and geijerene being the dominant ones. In stems, 21 compounds were found; they were dominated by decan-2-one, geijerene, nonan-2-one and undecan-2-one. In contrast, roots exhibited a large variation with 25 volatile compounds and octyl acetate, methyl decanoate, phytyl acetate were the major ones. Salt stress induced significant antibacterial activity changes, mainly in leaves and stems. In leaves, the minimum inhibitory and bactericidal concentration decreased at 100 mM NaCl against Listeria 477, the two strains of E. coli (45AG and 45AI) and P. aeruginosa but it increased versus other bacteria. In stems, salt increased oil antibacterial activity against all strains except P. aeruginosa ATCC 10145. Root oil showed the least antibacterial activity under saline conditions versus Listeria 477 and P. aeruginosa ATCC 10145. As regards antifungal activity, NaCl reduced the antifungal activity of essential oils against the majority of fungi strains.  相似文献   

20.
Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na+ ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H2O2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na+ ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na+ ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号