首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcareous grasslands belong to the most diverse, endangered habitats in Europe, but there is still insufficient information about the origin of the plant species related to these grasslands. In order to illuminate this question, we chose for our study the representative grassland species Hippocrepis comosa (Horseshoe vetch). Based on species distribution modeling and molecular markers, we identified the glacial refugia and the postglacial migration routes of the species to Central Europe. We clearly demonstrate that H. comosa followed a latitudinal and due to its oceanity also a longitudinal gradient during the last glacial maximum (LGM), restricting the species to southern refugia situated on the Peninsulas of Iberia, the Balkans, and Italy during the last glaciation. However, we also found evidence for cryptic northern refugia in the UK, the Alps, and Central Germany. Both species distribution modeling and molecular markers underline that refugia of temperate, oceanic species such as H. comosa must not be exclusively located in southern but also in western of parts of Europe. The analysis showed a distinct separation of the southern refugia into a western cluster embracing Iberia and an eastern group including the Balkans and Italy, which determined the postglacial recolonization of Central Europe. At the end of the LGM, H. comosa seems to have expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, and Germany.  相似文献   

2.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

3.
The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows. We used genomic data to analyse genetic diversity and colonization history of the bank vole (Myodes glareolus) throughout Europe (>800 samples) with Fennoscandia as the northern apex. We inferred that bank voles colonized Fennoscandia multiple times by two different routes; with three separate colonizations via a southern land‐bridge route deriving from a “Carpathian” glacial refugium and one via a north‐eastern route from an “Eastern” glacial refugium near the Ural Mountains. Clustering of genome‐wide SNPs revealed high diversity in Fennoscandia, with eight genomic clusters: three of Carpathian origin and five Eastern. Time estimates revealed that the first of the Carpathian colonizations occurred before the Younger Dryas (YD), meaning that the first colonists survived the YD in Fennoscandia. Results also indicated that introgression between bank and northern red‐backed voles (Myodes rutilus) took place in Fennoscandia just after end‐glacial colonization. Therefore, multiple colonizations from the same and different cryptic refugia, temporal and spatial separations and interspecific introgression have shaped bank vole genetic variability in Fennoscandia. Together, these processes drive high genetic diversity at the apex of the northern expansion in this emerging model species.  相似文献   

4.
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans.  相似文献   

5.
Glacial refugia of mammals in Europe: evidence from fossil records   总被引:6,自引:1,他引:5  
  • 1 Glacial refugia were core areas for the survival of temperate species during unfavourable environmental conditions and were the sources of postglacial recolonizations. Unfortunately, the locations of glacial refugia of animals and plants are usually described by models, without reference to facts about real geographical ranges at that time.
  • 2 Careful consideration of the faunal assemblages of archaeological sites from the Younger Palaeolithic, which are precisely dated to the Last Glacial Maximum (LGM), gives indications about the distribution of species during the LGM (23 000–16 000 bp ) and provides evidence for the locations of glacial refugia for mammalian species in Europe.
  • 3 In Europe, 47 LGM sites, dating from 23 000 to 16 000 bp and containing typical temperate mammal species, have been described. The geographical range of these archaeological sites clearly shows a distribution which differs from the hypothesized traditional refuge areas of the temperate fauna. A considerable number of sites situated in the Dordogne in south‐western France and the Carpathian region contain records of red deer Cervus elaphus, roe deer Capreolus capreolus, wild boar Sus scrofa and red fox Vulpes vulpes.
  • 4 The faunal composition of the majority of the evaluated Palaeolithic sites in the southern European peninsulas (with the exception of Greece), as well as France and the Carpathian region, indicates the co‐occurrence of these temperate species with cold‐adapted faunal elements such as mammoth Mammuthus primigenius and/or reindeer Rangifer tarandus.
  • 5 The survival of species in Central European refugia would have significant consequences for phylogeography and would be revealed by the dominant distribution of haplotypes, originating from this region. A Carpathian refuge could also be the reason for the very early records of small mammals or mustelids from the Late‐Glacial or Interstadials before the LGM in regions like southern Germany.
  相似文献   

6.
  • 1 During the Last Glacial Maximum, European red deer Cervus elaphus occurred in refugia in Iberia/southern France, Italy, the Balkans and the Carpathians. Most of Europe, including large parts of the east and north‐east, is now inhabited by red deer from the western lineage. The eastern lineage is largely confined to south‐eastern Europe; a third lineage comprises Sardo‐Corsican and Barbary red deer.
  • 2 Sardo‐Corsican, Barbary and Mesola red deer are genetically unique units. They exhibit low levels of genetic diversity and deserve particular protection, since conservation strategies should target genetic information.
  • 3 Hybridization between sika Cervus nippon and red deer occurs rarely, but may lead to extensive introgression, particularly in parts of the British Isles. Further expansion of both species may lead to increased hybridization in continental Europe.
  • 4 Although hunting has an impact on red deer gene pools, the main threat today is habitat fragmentation in human‐dominated landscapes. The resulting increase in genetic drift and inbreeding reduces variability in isolated populations and may lead to inbreeding depression. To support vital meta‐populations, migration corridors should be established.
  相似文献   

7.
Brito PH 《Molecular ecology》2005,14(10):3077-3094
The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene.  相似文献   

8.
  • Calcareous grasslands belong to the most species‐rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post‐glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands.
  • The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post‐glacial migration routes to Central Europe.
  • Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post‐glacial recolonisation.
  • Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post‐glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
  相似文献   

9.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

10.
Many studies have addressed the latitudinal gradients in intraspecific genetic diversity of European taxa generated during postglacial range expansion from southern refugia. Although Asia Minor is known to be a centre of diversity for many taxa, relatively few studies have considered its potential role as a Pleistocene refugium or a potential source for more ancient westward range expansion into Europe. Here we address these issues for an oak gallwasp, Andricus quercustozae (Hymenoptera: Cynipidae), whose distribution extends from Morocco along the northern coast of the Mediterranean through Turkey to Iran. We use sequence data for a fragment of the mitochondrial gene cytochrome b and allele frequency data for 12 polymorphic allozyme loci to answer the following questions: (1) which regions represent current centres of genetic diversity for A. quercustozae? Do eastern populations represent one refuge or several discrete glacial refugia? (2) Can we infer the timescale and sequence of the colonization processes linking current centres of diversity? Our results suggest that A. quercustozae was present in five distinct refugia (Iberia, Italy, the Balkans, southwestern Turkey and northeastern Turkey) with recent genetic exchange between Italy and Hungary. Genetic diversity is greatest in the Turkish refugia, suggesting that European populations are either (a) derived from Asia Minor, or (b) subject to more frequent population bottlenecks. Although Iberian populations show the lowest diversity for putatively selectively neutral markers, they have colonized a new oak host and represent a genetically and biologically discrete entity within the species.  相似文献   

11.
Numerous studies have shown that the genetic diversity of species inhabiting temperate regions has been shaped by changes in their distributions during the Quaternary climatic oscillations. For some species, the genetic distinctness of isolated populations is maintained during secondary contact, while for others, admixture is frequently observed. For the winter moth (Operophtera brumata), an important defoliator of oak forests across Europe and northern Africa, we previously determined that contemporary populations correspond to genetic diversity obtained during the last glacial maximum (LGM) through the use of refugia in the Iberian and Aegean peninsulas, and to a lesser extent the Caucasus region. Missing from this sampling were populations from the Italian peninsula and from North Africa, both regions known to have played important roles as glacial refugia for other species. Therefore, we genotyped field‐collected winter moth individuals from southern Italy and northwestern Tunisia—the latter a region where severe oak forest defoliation by winter moth has recently been reported—using polymorphic microsatellite. We reconstructed the genetic relationships of these populations in comparison to moths previously sampled from the Iberian and Aegean peninsulas, the Caucasus region, and western Europe using genetic distance, Bayesian clustering, and approximate Bayesian computation (ABC) methods. Our results indicate that both the southern Italian and the Tunisian populations are genetically distinct from other sampled populations, and likely originated in their respective refugium during the LGM after diverging from a population that eventually settled in the Iberian refugium. These suggest that winter moth populations persisted in at least five Mediterranean LGM refugia. Finally, we comment that outbreaks by winter moth in northwestern Tunisia are not the result of a recent introduction of a nonnative species, but rather are most likely due to land use or environmental changes.  相似文献   

12.
Phylogeography of red deer (Cervus elaphus) in Europe   总被引:1,自引:0,他引:1  
Aim To investigate the phylogeographical patterns of red deer (Cervus elaphus) in Europe, and to disentangle the influence of ancient (e.g. Pleistocene ice ages) from more recent processes (e.g. human translocations). Location Europe. Methods In this study we provide by far the most extensive analysis of genetic structure in European red deer, based on analyses of variation at two mitochondrial markers (cyt b and D‐loop) in a large number of individuals from 39 locations. Relationships of mitochondrial DNA haplotypes were determined using minimum spanning networks and phylogenetic analyses. Population structure was examined by analyses of molecular variance. Historical processes shaping the present patterns were inferred from nested clade analysis and nucleotide diversity statistics. Results Within Europe, we detected three deeply divergent mitochondrial DNA lineages. The three lineages displayed a phylogeographical pattern dividing individuals into western European, eastern European and Mediterranean (Sardinia, Spain and Africa) groups, suggesting contraction into three separate refugia during the last glaciation. Few haplotypes were shared among these three groups, a finding also confirmed by FST values. Calculations of divergence times suggest that the groups probably split during the Pleistocene. Main conclusions The observed pattern is interpreted to result from isolation in different refugia during the last glaciation. The western and eastern European lineages could be linked to an Iberian and Balkan refugium, respectively. The third lineage might originate from a Sardinian or African refugium. We link local phylogeographical patterns observed in Europe to the post‐glacial recolonization process, shaped by the geographical localization of refugia and barriers to gene flow. Regardless of the importance of red deer as a game species and the tradition of translocating red deer in Europe, we detected few individuals that did not match the trichotomous pattern, suggesting that translocations have occurred mainly at smaller spatial scales.  相似文献   

13.
  • 1 The European roe deer Capreolus capreolus is a typical faunal element of the Holocene. It was already present in Europe at least 600 000 years ago and it has been known from both glacial and interglacial phases since then. With nearly 3000 fossil and subfossil records, it is one of the most frequent mammals in the Late Quaternary.
  • 2 During the Middle and Late Weichselian Pleniglacial, the distribution of the roe deer was not restricted to the Mediterranean peninsulas but repeatedly reached regions of central Europe. In contrast to that, roe deer records from the Last Glacial Maximum (LGM, 21.0–14.5 ka 14C BP) are largely confined to the Mediterranean peninsulas – with the exception of south‐western France and the surroundings of the Carpathians where several records attest to its occurrence during the LGM.
  • 3 During the Greenland Interstadial 1 (12.5–10.8 ka 14C BP), the species' distribution extended further north and the roe deer appeared north of the Alps and reached regions of central Germany. This seems to be correlated with the abrupt change to more favourable environmental conditions during this period. It is very likely that the roe deer disappeared north of the Alps during the Younger Dryas cooling (10.8–10.0 ka14C BP). The northern regions of the central European lowlands were recolonized by roe deer during the late Preboreal 9.7–9.5 ka 14C BP for the first time since the Weichselian Glacial.
  • 4 The combined pattern of genetic data and fossil records of European roe deer suggests several regions in the Iberian peninsula, southern France, Italy and the Balkans as well as in the Carpathians and/or eastern Europe as glacial refugia. It further suggests that C. capreolus might have recolonized most parts of central‐northern Europe out of one or more eastern European (not Balkan) and/or Carpathian refugia. This recolonization wave might have blocked immigration from the traditional Mediterranean areas.
  相似文献   

14.
The green woodpecker complex consists of the green woodpecker (Picus viridis), distributed from Western Europe to the Caucasus and Iran, and the related LeVaillant's woodpecker (P. vaillantii), distributed in north‐western Africa from central Morocco to Tunisia. Much of the habitat of green woodpeckers in Central and Northern Europe was covered by ice, tundra, steppe or other unsuitable habitat during the Pleistocene; consequently, they must have come to occupy most of their current range during the past 20 000 years. We used complete mitochondrial ND2 sequences from populations throughout the range to investigate the genetic structure and evolutionary history of this complex. Three well‐differentiated clades, corresponding to three biogeographical regions, were recovered; 89% of the total genetic variance was distributed among these three regions. The populations in North Africa were sister to those of Europe and, within Europe, Iberia was sister to the rest of Europe and the Near East. This suggests that the post‐glacial colonization of most of Europe occurred from a refuge east of Iberia, probably in Italy or the Balkans; there was no substantial divergence among these regions. In addition, a population sample from Iran was genetically distinct from those of Western Europe, indicating a history of genetic isolation and an additional Pleistocene refuge east of the well‐known Balkan refugia and south of the Caucasus. Within Europe, northern populations were less genetically variable than southern ones, consistent with recent colonization. There was significant isolation‐by‐distance across Europe, indicating restricted gene flow; this was particularly apparent between western populations and those of the Caucasus and Iran. We recognize four species in the complex. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 710–723.  相似文献   

15.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

16.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

17.
Northern and mountainous ice sheets have expanded and contracted many times due to ice ages. Consequently, temperate species have been confined to refugia during the glacial periods wherefrom they have recolonized warming northern habitats between ice ages. In this study, we compare the gene CYP405A2 between different populations of the common burnet moth Zygaena filipendulae from across the Western Palearctic region to illuminate the colonization history of this species. These data show two major clusters of Z. filipendulae populations possibly reflecting two different refugial populations during the last ice age. The two types of Z. filipendulae only co‐occur in Denmark, Sweden, and Scotland indicating that Northern Europe comprise the hybridization zone where individuals from two different refugia met after the last ice age. Bayesian phylogeographic and ecological clustering analyses show that one cluster probably derives from an Alpe Maritime refugium in Southern France with ancestral expansive tendencies to the British Isles in the west, touching Northern Europe up to Denmark and Sweden, and extending throughout Central Europe into the Balkans, the Peleponnes, and South East Europe. The second cluster encompasses East Anatolia as the source area, from where multiple independent dispersal events to Armenia, to the Alborz mountains in north‐western Iran, and to the Zagros mountains in western Iran are suggested. Consequently, the classical theory of refugia for European temperate species in the Iberian, Italian, and Balkan peninsulas does not fit with the data from Z. filipendulae populations, which instead support more Northerly, mountainous refugia.  相似文献   

18.
The European snow vole Chionomys nivalis has a patchy distribution restricted to rocky habitats across southern Europe and the Near and Middle East. We carried out a phylogeographic study to provide a biogeographic scenario, based on molecular data, outlining the major processes that determined the current distribution of the species. The samples include 26 snow voles from 14 different populations across the entire species range from Spain to Anatolia and Israel. Nearly complete sequences (1037 bp) of the mitochondrial gene for cytochrome b were sequenced. Relationships among haplotypes were inferred with neighbour-joining, maximum likelihood, maximum parsimony analyses and minimum spanning network. An analysis of mismatch distribution was used to cast light on past demographic expansion. We found 22 different haplotypes that fall into six distinct lineages, all but one is supported by high bootstrap values with all methods. Four lineages are allopatric (Tatra Mts., Iberia, Balkans and Middle East) while divergent haplotypes from two lineages show sympatry in the Alps and the Apennines. The basal relationships of these lineages could not be established by any tree. The mean pairwise genetic distance between lineages ranges from 2.4 to 4.2%. The shape of the mismatch distribution indicated a past expansion event dating back to between 158 000 and 84 000 years ago. These data can be interpreted with the existence of southern glacial refugia (Iberia, Balkans, Middle East and Italy) and one additional northern glacial refugium. The lack of phylogenetic resolution among lineages and the shape of mismatch distribution are indicative of a simultaneous and rapid splitting due to a relatively fast initial expansion of populations. Moreover, the analysis supports the hypothesis of the European origin of C. nivalis and its subsequent eastward dispersion during the Middle Pleistocene.  相似文献   

19.
The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid‐Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter‐specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.  相似文献   

20.
Pleistocene glacial cycles play a major role in diversification and speciation, although the relative importance of isolation and expansion in driving diversification remains debated. We analysed mitochondrial DNA sequence data from 15 great reed warbler (Acrocephalus arundinaceus) populations distributed over the vast Eurasian breeding range of the species, and revealed unexpected postglacial expansion patterns from two glacial refugia. There were 58 different haplotypes forming two major clades, A and B. Clade A dominated in Western Europe with declining frequencies towards Eastern Europe and the Middle East, but showed a surprising increase in frequency in Western and Central Asia. Clade B dominated in the Middle East, with declining frequencies towards north in Central and Eastern Europe and was absent from Western Europe and Central Asia. A parsimonious explanation for these patterns is independent postglacial expansions from two isolated refugia, and mismatch distribution analyses confirmed this suggestion. Gene flow analyses showed that clade A colonised both Europe and Asia from a refugium in Europe, and that clade B expanded much later and colonised parts of Europe from a refugium in the Middle East. Great reed warblers in the eastern parts of the range have slightly paler plumage than western birds (sometimes treated as separate subspecies; A. a. zarudnyi and A. a. arundinaceus, respectively) and our results suggest that the plumage diversification took place during the easterly expansion of clade A. This supports the postglacial expansion hypothesis proposing that postglacial expansions drive diversification in comparatively short time periods. However, there is no indication of any (strong) reproductive isolation between clades and our data show that the refugia populations became separated during the last glaciation. This is in line with the Pleistocene speciation hypothesis invoking that much longer periods of time in isolation are needed for speciation to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号