首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oviducts of 25 tortoises (Gopherus polyphemus) were examined by using histology and scanning electron microscopy to determine oviductal functional morphology. Oviductal formation of albumen and eggshell was of particular interest. The oviduct is composed of 5 morphologically distinct regions; infundibulum, uterine tube, isthmus, uterus, and vagina. The epithelium consists of ciliated cells and microvillous secretory cells throughout the oviduct, whereas bleb secretory cells are unique to the infundibulum. The epithelium and endometrial glands of the uterine tube histologically resemble those of the avian magnum which produce egg albumen and may be functionally homologous. The isthmus is a short, nonglandular region of the oviduct and appears to contribute little to either albumen or eggshell formation. The uterus retains the eggs until oviposition and may form both the fibrous and calcareous eggshell. The endometrial glands are histologically similar to the endometrial glands of the isthmus of birds, which are known to secrete the fibers of the eggshell. These glands hypertrophy during vitellogenesis but become depleted during gravidity. The uterine epithelium may supply "plumping water" to the egg albumen as well as transport calcium ions for eggshell formation. The vagina is extremely muscular and serves as a sphincter to retain the eggs until oviposition. Sperm are found within the oviductal lumen and endometrial glands from the posterior tube to the anterior uterus throughout the reproductive cycle. This indicates sperm storage within the female tract, although the viability and reproductive significance of these sperm are unknown.  相似文献   

2.
Shells from eggs of five species of kinosternid turtle (Sternotherus minor, Kinosternon flavescens, K. baurii, K. Hirtipes, and K. alamosae) were examined with light and scanning electron microscopy. Except for possible differences among species in thickness of eggshells, structure of shells from all eggs was similiar. In general, kinosternid turtles lay eggs having a rigid calcareous layer composed of calcium carbonate in the form of aragonite. The calcareous layer is organized into individual shell units with needlelike crystallites radiating from a common center. Most of the thickness of the eggshell is attributable to the calcareous layer, with the fibrous shell membrane comprising only a small fraction of shell thickness. Pores are found in the calcareous layer, but they are not numereous. The outer surface of the eggshells is sculptured and may have a thick, organic layer in places. The outer surface of the shell membrane of decalcified eggshells is studded with spherical cores which presumably nucleate growth of shell units during shell formation. The shell membrane detaches from eggs incubated to hatching, carrying with it remnants of the calcareous layer. Such changes in shell structure presumably reflect withdrawal of calcium from the eggshell by developing embryos.  相似文献   

3.
Kress A  Schmekel L 《Tissue & cell》1992,24(1):95-110
Runcina is a small hermaphroditic opisthobranch which possesses a monaulic reproductive system. In previous studies the male copulatory apparatus, the structure of the spermatophore and also the process of oogenesis have been described. The present paper gives an account of the ultrastructure of the female genital glands of the oviduct. In Runcina the oviduct comprises three primary regions, the albumen gland, the egg capsule gland and the mucous gland. Eggs enter the fertilization chamber and as they pass the opening of the albumen gland they become surrounded by albumen or perivitelline fluid. The eggs appear to become encapsulated as they traverse the egg-capsule gland and are eventually stuck together by mucus to form an egg mass. The epithelial lining of the three glands consists of alternating ciliated and secretory cells. The characteristics in secretory products of the glandular cells are described, and are discussed with reference to the way they contribute to egg vestment.  相似文献   

4.
Microscopic and in situ visual observations were used to relate circulating hormone levels to morphological changes in the oviduct of the snapping turtle Chelydra serpentina throughout the ovarian cycle. Increase in levels of progesterone (P), estradiol (E2) and testosterone (T) levels coincide with an increase in number and growth of endometrial glands, luminal epithelial cells and secretory droplets throughout the oviduct. Testosterone and estradiol levels rose significantly (P < 0.05) after the May-June period and remained high throughout the rest of the summer. Progesterone levels remained stable throughout the summer, with a brief decline in July due to luteolysis. Hormonal values declined significantly (P < 0.001) at the end of the ovarian cycle in the fall. In situ visual observation of fresh oviducts at different stages of gravidity in recently ovulated turtles revealed that proteinaceous like components from the endometrial glands were released into the lumen to form fibers. The morphological features of the oviduct remained active throughout the summer months even though the snapping turtle is a monoclutch species which deposits all the eggs in late-May to mid-June. The high steroid levels correlate with and may be responsible for the secretory activity present throughout the summer and their decline correlates with change to low secretory activity in the fall. Calcium deposition accompanied by morphological changes in luminal cells are suggestive of secretory activity. In the egg-bearing turtles, uterine Ca2+ concentrations measured by flame atomic absorption spectrophotometry revealed significantly higher Ca2+ concentrations (P < 0.001) in eggs with soft shell than eggs without shell. There was a significant increase in calcium granules and proteinaceous fibers in luminal surface of the uterus during the period of eggshelling. This supports the fact that in the snapping turtle like in other reptiles, eggshelling process occurs in the uterus.  相似文献   

5.
Lampropholis guichenoti is an oviparous lizard that lays eggs with a calcareous outer shell. We used immunofluorescence microscopy to describe the occurrence and distribution of Ca2+ ATPase pumps in the uterus of L. guichenoti at different stages of the reproductive and egg-shelling cycles. Ca2+ ATPase pumps were not demonstrated by immunofluorescent techniques in any uterine tissue until egg-shelling had commenced and at least partly calcified eggs were in the uterus. During egg-shelling, Ca2+ ATPase pumps occur on the apical and baso-lateral surfaces of uterine epithelial cells, and those of associated shell glands in the stroma of the uterus. We conclude that Ca2+ ATPase pumps provide a major mechanism for deposition of the calcareous eggshell of L. guichenoti and that the pumps are up-regulated when required in the reproductive cycle. Furthermore, it is likely that specific calcium glands in the stroma of the uterus are involved in the rapid transport required for egg-shelling, but the differential contribution of luminal and glandular epithelial cells is not known.  相似文献   

6.
The ultrastructural changes occurring in the fully functional oviduct of Isa Brown laying hens were studied during various stages of the laying cycle. Hens were killed at different positions of the egg in the oviduct. The oviduct was lined by ciliated and non-ciliated cells (also referred to as granular cells). The granular cells in the infundibulum contributed to secretion during egg formation, whereas ciliated cells showed little evidence of secretion. Ultrastructural changes were recorded in the granular and glandular cells of the distal infundibulum. In the magnum, the surface ultrastructure revealed glandular openings associated with the ciliated and granular cells. Cyclic changes were recorded in the glandular cells of the magnum. With respect to the three observed types of glands, the structure of gland type A and C cells varied at different egg positions in the oviduct, whereas type B cells represented a different type of gland cell containing amorphous secretory granules. The surface epithelium of the isthmus was also lined by mitochondrial cells. Two types of glandular cell (types 1 and 2) were recorded in the isthmus during the laying cycle. Intracisternal granules were found in type 2 cells of the isthmus. A predominance of glycogen particles occurred in the tubular shell gland. The granular cells in the shell gland contain many vacuoles. During egg formation, these vacuoles regressed following the formation of extensive rough endoplasmic reticulum; the reverse also occurred. The disintegrated material found in the vacuoles may have been derived from the disintegrating granules. The Physiology Teaching Unit, University of New England, provided financial support to K. Chousalkar for this study.  相似文献   

7.
Histochemical investigations of the secretions of reproductive glands—albumen gland, apical uterus, basal uterus and prostate gland—indicate the presence of galactogen in the albumen gland, acid mucopolysaccharide in the apical uterus, and lipoprotein in the basal uterus and prostate gland of A. fulica. The proteinaceous secretions produced by the glands do differ in their terminal reactive sites. Intense alkaline phosphatase reaction is found in albumen gland and apical uterus; carbonic anhydrase activity could be detected mainly in the uterine glands. The cyclical secretory activity of the reproductive glands has been studied preparatory to egg-laying and in the spent phase. Histochemical characteristics of the egg envelopes—albumen, shell membrane and egg-shell—suggest a possible sequential deposition of glandular products during the descent of eggs through the repv. ductive tract. The factors contributing to the stability and resistant nature of the egg envelopes, and the possible role of nutritive materials contained in reproductive gland secretions in the development of the embryo (even while the eggs are inside the uterus), are discussed.  相似文献   

8.
1. Eggs of Crocodilia and Chelonia, like those of birds, have a pair of egg membranes separating a thick layer of albumen from the calcareous shell. In contrast, eggs of oviparous Lepidosauria have only a single shell membrane, upon which relatively small amounts of calcium carbonate are deposited; and the volume of albumen in eggs is extraordinarily small at the time of oviposition. 2. With the possible exception of certain geckos and some chelonians, eggs of oviparous reptiles seem always to absorb water from the substrate during the course of normal incubation. In so far as the rate of water absorption exceeds the rate of water loss by transpiration from exposed surfaces, the eggs swell during incubation. The term ‘cleidoic’ cannot be used to describe eggs of this type. 3. Embryos of lizards and snakes influence the water potential of extra-embryonic fluids contained within their eggs, thereby maintaining or increasing the gradient in water potential that drives water absorption. 4. Embryos of Crocodilia and Chelonia obtain a substantial portion of the calcium used in ossification of skeletal elements from the inner surfaces of the eggshell. In contrast, embryonic lizards and snakes draw upon extensive reserves of calcium present in the yolk, and obtain little (if any) calcium from the eggshell. 5. All reptilian embryos seem to produce substantial quantities of urea as a detoxification product of protein catabolism. Contrary to expectation, uricotelism may not be common among reptilian embryos, even in those few instances where development takes place within a hard, calcareous egg. 6. In eggs of Crocodilia and Chelonia, respiratory gases seem to pass by diffusion through pores in the calcareous eggshell and through spaces between the fibres of the pair of egg membranes. No pores have been observed in the shell of lepidosaurian eggs, and so gases presumably diffuse between the fibres of the single (multilayered) shell membrane. 7. Metabolism of reptilian embryos is temperature-dependent, as is true for most ectothermic organisms. For each species, there appears to be a particular temperature at which embryonic development proceeds optimally, and departures from this optimum elicit increases in developmental anomalies and/or embryonic mortality. 8. Viviparity has evolved on numerous occasions among species of the Squamata, but seemingly never among Crocodilia or Chelonia. Since the evolution of viviparity entails a progressive reduction in the eggshell, only those organisms whose embryos do not depend upon the eggshell as a source of calcium may have the evolutionary potential to become viviparous. 9. Evolutionary transitions from oviparity to viviparity could have been driven by selection related to (i) thermal benefits to embryos consequent upon retention of eggs within the body of a parent capable of behavioural thermoregulation; (ii) protection of the eggs from nest predators and/or soil microbes; and (iii) more effective exploitation of a seasonal food resource by early emerging young.  相似文献   

9.
Telocytes (Tcs) are cells with telopodes (Tps), which are very long cellular extensions with alternating thin segments (podomers) and dilated bead‐like thick regions known as podoms. Tcs are a distinct category of interstitial cells and have been identified in many mammalian organs including heart, lung and kidney. The present study investigates the existence, ultrastructure, distribution and contacts of Tcs with surrounding cells in the uterus (shell gland) of the oviduct of the Chinese soft‐shelled turtle, Pelodiscus sinensis. Samples from the uterine segment of the oviduct were examined by transmission electron microscopy. Tcs were mainly located in the lamina propria beneath the simple columnar epithelium of the uterus and were situated close to nerve endings, capillaries, collagen fibres and secretory glands. The complete morphology of Tcs and Tps was clearly observed and our data confirmed the existence of Tcs in the uterus of the Chinese soft‐shelled turtle Pelodiscus sinensis. Our results suggest these cells contribute to the function of the secretory glands and contraction of the uterus.  相似文献   

10.
11.
Oviductal functional morphology remains poorly understood in oviparous snakes, particularly in regard to oviductal formation of albumen and the eggshell and to sperm storage. The oviduct of Diadophis punctatus was examined using histology and scanning electron microscopy to determine oviductal functional morphology throughout the reproductive cycle. The oviduct is composed of four morphologically distinct regions: infundibulum, uterine tube, uterus, and vagina. The infundibulum is thin, flaccid, and lined with simple ciliated cuboidal epithelial cells. The tube contains ciliated and secretory epithelial cells, which reach a maximum height and hypertrophy during early gravidity and produce glycosaminoglycans. The posterior portion of the tube contains temporary sperm storage receptacles. The uterus retains eggs throughout gestation and secretes the eggshell constituents. The endometrial glands of the uterus hypertrophy during vitellogenesis and become depleted of the secretory granules during gravidity. The functional morphology of the oviduct therefore shows cyclical changes that are correlated with eggshell formation. The vagina consists of thick longitudinal and circular smooth muscle layers, which may serve in retention of eggs during gestation. Furthermore, the vagina contains long furrows in the mucosa that serve as sperm storage receptacles. These receptacles store sperm following fall mating and overwintering, whereas the receptacles in the tube are utilized briefly during vitellogenesis just prior to ovulation. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The reproductive systems and especially the nidamental glands of 20 species of Opisthobranchia belonging to the ”Cephalaspidea s. l.”, Anaspidea, Sacoglossa, Tylodinoidea and Pleurobranchoidea, have been investigated histologically and ultrastructurally. The nidamental glandular system is responsible for the formation of the egg masses. In all investigated species it is divided into three distinct parts. The most proximal part can be an albumen gland (some ”Cephalaspidea s. l.”, Anaspidea and Sacoglossa) or can exhibit a capsule gland (some ”Cephalaspidea s. l.”, Tylodinoidea and Pleurobranchoidea). All species additionally possess a membrane gland and a distally lying mucous gland. In some species the most distal part of the oviduct was also found to be glandular. The structure of the nidamental glands is described and compared within the Opisthobranchia. Albumen and capsule glands are found to be homologous glandular parts of the system. It can be concluded that the albumen gland has undergone a structural and functional change within the evolution of the Opisthobranchia. Accepted: 26 December 2000  相似文献   

13.
Morphological changes occurring in the oviduct and epithelial cells of the lizards Crotaphytus collaris and Eumeces obsoletus during the natural reproductive cycle were examined and quantified. Additionally, development of the eggshell at different stages of gravidity was described. The anterior uterus of each species has a distinct glandular type which differs between species: in E. obsoletus, the glands are tubular and in C. collaris, branched saccular. The branched saccular glands in the anterior uterus of C. collaris produce collagen-like material that forms the fibers of the shell membranes. However, fibers from the eggshell of E. obsoletus did not stain for collagen. The shell of both species is composed of a multilayered inner boundary covered externally by fibers of varying thickness. Initial layers are composed of thick fibers all lying along the same general axis. Outer layers of fibers are progressively thinner and an external surface layer composed of glycosaminoglycans (GAGs) is also present. In C. collaris, calcium, which is deposited in relatively small amounts on the shell surface, appears to be secreted by the epithelium of the anterior uterus. The nonciliated secretory epithelial cells covering the villi-like folds of the posterior infundibulum secrete GAGs. Epithelial cell height of the infundibular villi is greatest during early gravidity. A functional relationship may exist between luteal activity and oviductal secretory activity because the activity of the glandular epithelium varied as gravidity progressed.  相似文献   

14.
The morphology of the female reproductive tract and corpus luteum is examined in Sphenomorphus fragilis, a lizard from the lowland regions of New Guinea exhibiting incipient viviparity. Females oviposit eggs that hatch either immediately or within a few hours. Corpora lutea form from ovulated follicles and decrease in diameter as embryonic development progresses. The oviduct from vitellogenic females is sparsely populated with well developed uterine glands containing secretory granules. The eggs are covered with a relatively thin shell (10 μm thick) composed of an inner boundary layer and proteinacous fibers. The secreted shell is complete by early neurulation. Shell morphology does not change throughout the remainder of the in utero incubation period. A well vascularized uterus and chorioallantoic membrane provide simple placentation. These findings suggest that the reduction in shell thickness associated with the evolution of a placenta is due to a decrease in the number of shell glands in the uterus and is not a delay or inhibition of the shelling process per se. This hypothesis further suggests that the selective forces favoring shell gland loss act on the vitellogenic female during gland recruitment which occurs prior to ovulation and not on the pregnant female. © 1992 Wiley-Liss, Inc.  相似文献   

15.
SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.  相似文献   

16.
We studied the effect of egg mass of eight different avian species on Se distribution between egg components and the effect of incubation on Se accumulation by chicken eggshell and shell membrane. Eight groups of birds received a diet without Se supplementation. Unfertile eggs were collected after 35 days of feeding; yolk, albumen, shell and shell membrane were assayed separately for Se. All avian species studied showed identical Se concentration in yolk–albumen complex equal to 38.7 μg Se/100 g, reflecting a linear correlation between yolk–albumen mass and Se content. Shells and shell membrane Se accumulation showed quadratic correlation with the appropriate mass thus explaining unusually high Se concentration in ostrich shell and shell membrane, that reached values 1785 and 1904 μg Se/kg respectively. Incubation of fertile eggs decreased eggshell Se content, the effect being more expressed in eggs from hens fed sodium selenite compared to organic Se utilization (Sel-Plex). It was concluded that shell might be an additional Se source for an embryo.  相似文献   

17.
18.
Eggs of the turtle Trionyx spiniferus are rigid, calcareous spheres averaging 2.5 cm in diameter. The eggshell is morphologically very similar to avian eggshells. The outer crystalline layer is composed of roughly columnar aggregates, or shell units, of calcium carbonate in the aragonite form. Each shell unit tapers to a somewhat conical tip at its base. Interior to the crystalline layer are two tertiary egg membranes: the outer shell membrane and the inner shell membrane. The outer shell membrane is firmly attached to the inner surface of the shell, and the two membranes are in contact except at the air cell, where the inner shell membrane separates from the outer shell membrane. Both membranes are multi-layered, with the inner shell membrane exhibiting a more fibrous structure than the outer shell membrane. Numerous pores are found in the eggshell, and these generally occur at the intersection of four or more shell units.  相似文献   

19.
Oviductal structure is described in New Zealand's common gecko, Hoplodactylus maculatus, over four reproductive stages (early/mid-vitellogenesis, late vitellogenesis, early pregnancy, late pregnancy), using light, scanning electron, and transmission electron microscopy. Five regions of the oviduct are recognized: infundibulum, uterine tube, isthmus, uterus, and vagina. Up to three cell types make up the luminal epithelium of the oviduct: ciliated, nonciliated, and bleb cells. The function of bleb cells (seen in the infundibulum only) is unknown, but observation of these cells using transmission electron microscopy suggests that they are involved in secretory activity. Mucosal glands in the uterine tube possess large numbers of secretory granules of varying electron densities. Additionally, these glands appear to function as sperm storage tubules. Numerous sperm are seen in the glands during late vitellogenesis and early pregnancy. Very few uterine mucosal (shell) glands are seen during vitellogenesis, which is consistent with the observation that only a fine shell membrane covers the egg during early pregnancy. By late pregnancy, extraembryonic membranes lie adjacent to the uterus allowing the formation of the omphalo- and chorioallantoic placentas. Maximum cell height in the luminal epithelium is seen during vitellogenesis. The maximum percentage of ciliated cells making up the epithelial layer is seen during pregnancy. The low number of uterine mucosal glands seen in H. maculatus is a feature typical of other viviparous reptiles described, despite independent evolutions of viviparity. Although oviductal structure has been described in the literature for various reptiles, several ultrastructural features seen in this study highlight the lack of detailed understanding of this tissue. J. Morphol. 234:51-68, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The avian eggshell is an acellular bioceramic containing organic and inorganic phases that are sequentially assembled during the time the egg moves along the oviduct. As it has been demonstrated in other mineralized tissues, mineralization of the eggshell is regulated by extracellular matrix proteins especially the anionic side chains of proteoglycans. Among them, osteopontin has been found in the avian eggshell and oviduct. However, its precise localization in the eggshell or in different oviduct regions during eggshell formation, nor its function have been established. By using anti-osteopontin antibody (OPN 1), we studied its immunolocalization in the isthmus, red isthmus and shell gland of the oviduct, and in the eggshell during formation. In the eggshell, osteopontin was localized in the core of the non-mineralized shell membrane fibers, in the base of the mammillae and in the outermost part of the palisade. In the oviduct, OPN 1 was localized in the ciliated epithelial but not in the tubular gland cells of the isthmus, in the ciliated epithelial cells of the red isthmus, and in the non-ciliated epithelial cells of the shell gland. The occurrence of osteopontin in each of the oviduct regions, coincided with the concomitant presence of the egg in such region. Considering the reported inhibitory function of osteopontin in other mineralized systems, together with its main occurrence in the non-mineralized parts of the eggshell and at the outermost part of the shell, suggests that this molecule could be part of the mechanism regulating the eggshell calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号