首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new microcalorimetric method for recording the kinetic parameters k(cat), K(m) and K(i) of alpha-amylases using polysaccharides and oligosaccharides as substrates is described. This method is based on the heat released by glycosidic bond hydrolysis. The method has been developed to study the active site properties of the cold-active alpha-amylase produced by an Antarctic psychrophilic bacterium in comparison with its closest structural homolog from pig pancreas. It is shown that the psychrophilic alpha-amylase is more active on large macromolecular substrates and that the higher rate constants k(cat) are gained at the expense of a lower affinity for the substrate. The active site is able to accommodate larger inhibitory complexes, resulting in a mixed-type inhibition of starch hydrolysis by maltose. A method for recording the binding enthalpies by isothermal titration calorimetry in a low-affinity system has been developed, allowing analysis of the energetics of weak ligand binding using the allosteric activator chloride. It is shown that the low affinity of the psychrophilic alpha-amylase for chloride is entropically driven. The high enthalpic and entropic contributions of activator binding suggest large structural fluctuations between the free and the bound states of the cold-active enzyme. The kinetic and thermodynamic data for the psychrophilic alpha-amylase indicate that the strictly conserved side-chains involved in substrate binding and catalysis possess an improved mobility, responsible for activity in the cold, and resulting from the disappearance of stabilizing interactions far from the active site.  相似文献   

2.
Kidney beans, Phaseolus vulgaris, contain a proteinaceous inhibitor of alpha-amylase, which we have named phaseolamin. The inhibitor has been purified to homogeneity by conventional protein fractionation methods involving heat treatment, dialysis, and chromatography on DEAE-cellulose, Sephadex G-100, and CM-cellulose. Phaseolamin is specific for animal alpha-amylases, having no activity towards the corresponding plant, bacterial, and fungal enzymes, or any other hydrolytic enzyme tested. Optimal inhibitory activity is expressed during preincubation of enzyme and inhibitor at pH 5.5 and 37 degrees. Substrate prevents inhibition. Measurement of the stoichiometry on inhibition showed that a 1:1 complex of alpha-amylase and inhibitor is formed. Complex formation was demonstrated by chromatography on Sephadex G-100. The phaseolamin-amylase complex is dissociated at low pH values, apparently as a result of destruction of the enzyme; the complex cannot be dissociated by other conditions unfavorable for inhibition (low temperature or high pH). Phaseolamin inhibits hog pancreatic alpha-amylase in a noncompetitive manner.  相似文献   

3.
An artificially inserted extra peptide (21 amino acid peptide) between the B. subtilis alpha-amylase signal peptide and the mature thermostable alpha-amylase was completely cleaved by B. subtilis alkaline protease in vitro. The cleavage to form a mature enzyme was observed between pH 7.5 and 10, but not between pH 6.0 and 6.5, although a similar protease activity toward Azocall was observed between pH 6.0 and 7.5. To analyze the effects of pH on the cleavage, CD spectra at pH 6, 8, and 11 of the NH2-terminally extended thermostable alpha-amylase were analyzed and the results were compared with those of the mature form of the alpha-amylase. It is suggested that the cleavage of the NH2-terminally extended peptide is controlled by the secondary and tertiary structure of the precursor enzyme. Similar cleavage of different NH2-terminally extended peptides by the alkaline protease was also found in other hybrid thermostable alpha-amylases obtained.  相似文献   

4.
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.  相似文献   

5.
Some properties of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) from two psychrophilic Chloromonas species have been investigated in relation to their adaptation to cold environments. Contrary to the situation usually encountered with psychrophilic enzymes, the carboxylase activity of both purified "cold" RUBISCO enzymes was lower at low temperatures than that found with the enzyme of the mesophilic alga Chlamydomonas reinhardtii Dangeard. Moreover, the apparent optimal temperature for RUBISCO carboxylase activity was similar for psychrophilic and mesophilic enzymes. Psychrophilic RUBISCOs, however, showed a greater thermosensitivity than the C. reinhardtii enzyme. Genes encoding small and large subunits of RUBISCO from one psychrophilic isolate were sequenced. Comparison of the deduced amino acid sequences to those of higher plants and green algae revealed the substitution of a very highly conserved residue (cysteine247 → serine in the large subunit) that could be responsible, at least in part, for the increased thermosensitivity of the "cold" enzyme. Interestingly, the relative amount of RUBISCO subunits found in the psychrophilic isolates was about twice as high as the amount observed in C. reinhardtii and five other mesophilic algae. The high production of a key enzyme to counterbalance its poor catalytic efficiency at low temperature could constitute a novel type of adaptive mechanism to cold environments.  相似文献   

6.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

7.
Glycogen content and alpha-amylase activity were estimated in the infective juveniles (IJs) of Heterorhabditis bacteriophora at different times of storage. The glycogen content declined from 5.8 to 2.5 ng/IJ during storage for 40 days at 27 degrees C. The change in glycogen content coincided with the change of alpha-amylase activity during storage. alpha-Amylase was purified from IJs at zero time of storage by ion exchange chromatography and gel filtration. Ion exchange chromatography resolved alpha-amylase into three isoenzymes. The major isoenzyme alpha-amylase I had the highest specific activity and was purified to homogeneity. A molecular mass of 46-47 kDa was estimated for both the native and denatured enzyme, suggesting that the enzyme is monomeric. The Km values were 6.5 and 9.6 mg/ml using starch and glycogen as substrates, respectively. alpha-Amylase I showed optimum activity at pH 7.0 and had an optimum temperature of 40 degrees C. The enzyme was unstable at temperatures above 40 degrees C. The enzyme activity was severely inhibited by EDTA, p-CMB and iodoacetic acid, but potentiated by CaCl2 and NaCl. These results are discussed and compared with previously reported alpha-amylases in the insect hosts of the parasite.  相似文献   

8.
Three different alpha-amylases from Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis, were mutually compared with respect to thermal stability, pressure stability, and combined pressure-temperature stability. Measurements of residual enzyme activity and residual denaturation enthalpy showed that the alpha-amylase from B. licheniformis has by far the highest thermostability and that the two other alpha-amylases have thermostabilities of the same order of magnitude. FTIR spectroscopy showed that changes in the conformation of the alpha-amylases from B. amyloliquefaciens, B. subtilis, and B. licheniformis due to pressure occurred at about 6.5, 7.5, and 11 kbar, respectively. It seemed that, for the enzymes studied, thermal stability was correlated with pressure stability. As to the resistance under combined heat and high pressure, the alpha-amylase from B. licheniformis was much more stable than the alpha-amylases from B. amyloliquefaciens and B. subtilis, the latter two being about equally stable. It appears that under high pressure and/or temperature, B. licheniformis alpha-amylase is the most resistant among the three enzymes studied. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
A combination of ion-exchange chromatography, preparative electrophoresis and gel filtration chromatography allowed a 1209-fold purification of one of the two major digestive alpha-amylases from larvae of the larger grain borer, Prostephanus truncatus Horn. The purified enzyme showed a molecular mass of 60.2 kDa, an isoelectric point of 4.7 and an optimal pH for activity of 6.0. The enzyme was heat labile and it was recognized by proteinaceous inhibitors from amaranth seeds (Amaranthus hypochondriacus), whereas extracts from maize (Zea mays) and tepary bean (Phaseolus acutifolius) produced very low inhibition. When the enzyme was measured at different stages of development, maximal activity was found in the second instar larvae. Activity drastically decreased to a very low level during the pupae stage and increased again at the adult stage. A zymogram of the different developmental stages showed two main bands of alpha-amylase activity, which almost disappeared at the pupae stage to increase again during the adult stage, revealing a new, smaller band. This new band may be required for a better adaptation of the adult insect to its new environment.  相似文献   

10.
The alpha-amylases in the salivary glands of Lygus hesperus Knight and L. lineolaris (Palisot de Beauvois) were isolated and purified by ion exchange chromatography, and by isoelectric focusing, respectively. The alpha-amylase from L. hesperus had an isoelectric point (pI) of 6.25, and a pH optimum of 6.5. The specific activity of alpha-amylases in the salivary glands of L. hesperus was 1.2 U/mg/ml. The alpha-amylase from L. lineolaris had a pI of 6.54, and a pH optimum of 6.5. The specific activity of alpha-amylase from L. lineolaris was 1.7 U/mg/ml. The activity of alpha-amylase in both species was significantly inhibited by alpha-amylase inhibitor from wheat and also by EDTA and SDS. Sodium chloride enhanced alpha-amylase activity for both species. The enzyme characteristics and relative activities are discussed in the context of differences phytophagous versus zoophagous habits in these two congeneric species.  相似文献   

11.
The amylase from Tenebrio molitor L. larvae (yellow mealworm) was characterized according to a number of its molecular and catalytic properties. The insect amylase is a single polypeptide chain with mol.wt. 68000, an isoelectric point of 4.0 and a very low content of sulphur-containing amino acids. The enzyme is a Ca2+-protein and behaves as an alpha-amylase. Removal of Ca2+ by exhaustive dialysis against water causes the irreversible inactivation of the enzyme. Moreover, the enzyme is activated by the presence in the assay mixture of Cl-, or some other inorganic anions that are less effective than Cl-, and is inhibited by F-. Optimal conditions of pH and temperature for the enzymic activity are 5.8 and 37 degrees C. The insect amylase exhibits an identical kinetic behaviour toward starch, amylose and amylopectin; the enzyme hydrolyses glycogen with a higher affinity constant. Compared with the non-insect alpha-amylases described in the literature, Tenebrio molitor amylase has a lower affinity for starch.  相似文献   

12.
13.
Aspergillus kawachii produces two kinds of alpha-amylase, one is an acid-unstable alpha-amylase and the other is an acid-stable alpha-amylase. Because the quality of the shochu depends strongly on the activities of the alpha-amylases, the culture conditions under which these alpha-amylases are produced were examined. In liquid culture, acid-unstable alpha-amylase was produced abundantly, but, acid-stable alpha-amylase was not produced. The acid-unstable alpha-amylase was produced significantly when glycerol or glucose was used as a carbon source, similarly to the use of inducers such as starch or maltose. In liquid culture, A. kawachii assimilated starch at pH 3.0, but no alpha-amylase activity was recognized in the medium. Instead, the alpha-amylase was found to be trapped in the cell wall. The trapped form was identified as acid-unstable alpha-amylase. Usually, acid-unstable alpha-amylase is unstable at pH 3.0, so its stability appeared to be due to its immobilization in the cell wall. In solid-state culture, both kinds of alpha-amylase were produced. The production of acid-stable alpha-amylase seems to be solid-state culture-specific and was affected by the moisture content in the solid medium.  相似文献   

14.
Feller G  d'Amico D  Gerday C 《Biochemistry》1999,38(14):4613-4619
The thermal stability of the cold-active alpha-amylase (AHA) secreted by the Antarctic bacterium Alteromonas haloplanctis has been investigated by intrinsic fluorescence, circular dichroism, and differential scanning calorimetry. It was found that this heat-labile enzyme is the largest known multidomain protein exhibiting a reversible two-state unfolding, as demonstrated by the recovery of DeltaHcal values after consecutive calorimetric transitions, a DeltaHcal/DeltaHeff ratio close to unity, and the independence of unfolding thermodynamic parameters of scan rates. By contrast, the mesophilic alpha-amylases investigated here (from porcine pancreas, human salivary glands, yellow meal beetle, Bacillus amyloliquefaciens, and Bacillus licheniformis) unfold irreversibly according to a non-two-state mechanism. Unlike mesophilic alpha-amylases, the melting point of AHA is independent of calcium and chloride binding while the allosteric and structural functions of these ions are conserved. The thermostability of AHA at optimal conditions is characterized by a Tm of 43.7 degrees C, a DeltaHcal of 238 kcal mol-1, and a DeltaCp of 8.47 kcal mol-1 K-1. These values were used to calculate the Gibbs free energy of unfolding over a wide range of temperatures. This stability curve shows that (a) the specific DeltaGmax of AHA [22 cal (mol of residue)-1] is 4 times lower than that of mesophilic alpha-amylases, (b) group hydration plays a crucial role in the enzyme flexibility at low temperatures, (c) the temperature of cold unfolding closely corresponds to the lower limit of bacterial growth, and (d) the recombinant heat-labile enzyme can be expressed in mesophilic hosts at moderate temperatures. It is also argued that the cold-active alpha-amylase has evolved toward the lowest possible conformational stability of its native state.  相似文献   

15.
A cold alkaline protease, isolated from an Antarctic Pseudomonas aeruginosa strain, has been purified and crystallized. Large crystals were obtained in the presence of PEG 6000 at pH 7 and pH 8. They belong to the space group P2(1)2(1)2(1). A complete data set to 2.1 A resolution has been measured. The structure has been determined by the molecular replacement method using the coordinates of the mesophilic alkaline protease as a model. The molecular replacement solution displays a correlation coefficient of 0.39 and an R-factor of 0.48. Subsequent inspection of the electron density map in the active site region has confirmed the correctness of the solution. Model building and structure refinement will be initiated when the protease sequence becomes fully available. This is the second report, following one on an alpha-amylase, of the preliminary crystallographic characterization of a psychrophilic enzyme.  相似文献   

16.
Two distinct alpha-amylases have been identified in Toxoplasma gondii. They were purified close to homogeneity from cytoplasmic and membrane fractions. The apparent molecular weight of the cytoplasmic amylase was 22,300 Da and that of the membrane enzyme was 39,600 Da by gel filtration, and 25,000 and 41,000 Da by SDS gel electrophoresis, respectively. The physicochemical and catalytic properties of both enzymes showed them to be very different. Cytoplasmic alpha-amylase had an acid isoelectric point and its optimum pH was pH 5.0; its activity was unaffected by NaCl, Ca2+, or EDTA. The membrane alpha-amylase had an isoelectric point of 7.7 and an optimum pH of 8.0. It was affected by Ca2+, inhibited by EDTA, and activated eight-fold by NaCl. Both amylases were inactivated by temperatures above 65 degrees C, but cytoplasmic amylase was more resistant to thermal denaturation.  相似文献   

17.
The hydrolysis of starch to low-molecular-weight products (normally characterised by their dextrose equivalent (DE), which is directly related to the number-average molecular mass) was studied at different temperatures. Amylopectin potato starch, lacking amylose, was selected because of its low tendency towards retrogradation at lower temperatures. Bacillus licheniformis alpha-amylase was added to 10% [w/w] gelatinised starch solutions. The hydrolysis experiments were done at 50, 70, and 90 degrees C. Samples were taken at defined DE values and these were analysed with respect to their saccharide composition. At the same DE the oligosaccharide composition depended on the hydrolysis temperature. This implies that at the same net number of bonds hydrolysed by the enzyme, the saccharide composition was different. The hydrolysis temperature also influenced the initial overall molecular-weight distribution. Higher temperatures led to a more homogenous molecular weight distribution. Similar effects were observed for alpha-amylases from other microbial sources such as Bacillus amyloliquefaciens and Bacillus stearothermophilus. Varying the pH (5.1, 6.2, and 7.6) at 70 degrees C did not significantly influence the saccharide composition obtained during B. licheniformis alpha-amylase hydrolysis. The underlying mechanisms for B. licheniformis alpha-amylase were studied using pure linear oligosaccharides, ranging from maltotriose to maltoheptaose as substrates. Activation energies for the hydrolysis of individual oligosaccharides were calculated from Arrhenius plots at 60, 70, 80, and 90 degrees C. Oligosaccharides with a degree of polymerisation exceeding that of the substrate could be detected. The contribution of these oligosaccharides increased as the degree of polymerisation of the substrate decreased and the temperature of hydrolysis increased. The product specificity decreased with increasing temperature of hydrolysis, which led to a more equal distribution between the possible products formed. Calculations with the subsite map as determined for the closely related alpha-amylase from B. amyloliquefaciens reconfirmed this finding of a decreased substrate specificity with increased temperature of hydrolysis. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

18.
G oldberg , J.D. & E dwards , C. 1990. Purification and characterization of an extracellular amylase from a thermophilic streptomycete. Journal of Applied Bacteriology 69 , 712–717.
A single extracellular alpha-amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1) from Streptomyces thermoviolaceus subsp. apingens was purified to homogeneity by a starch adsorption method. SDS-PAGE indicated that the enzyme had an apparent M, of 57 kDa and activity was optimal at a pH of 7–2 and a temperature of 55C. It employed an endo-active mechanism to liberate predominantly maltose, as well as smaller amounts of higher oligosaccharides when incubated with starch. EDTA inhibited enzyme activity, suggesting an involvement of a divalent cation in activity. The enzyme was also stabilized by divalent cations when heated and the results suggested a major role for Ca2+ ions for both activity and thermostability. The alpha-amylase from S. thermoviolaceus displayed some similarities with commercially-used streptomycete alpha-amylases.  相似文献   

19.
A cold-active alpha-amylase was purified from culture supernatants of the antarctic psychrophile Alteromonas haloplanctis A23 grown at 4 degrees C. In order to contribute to the understanding of the molecular basis of cold adaptations, crystallographic studies of this cold-adapted enzyme have been initiated because a three-dimensional structure of a mesophilic counterpart, pig pancreatic alpha-amylase, already exists. alpha-Amylase from A. haloplanctis, which shares 53% sequence identity with pig pancreatic alpha-amylase, has been crystallized and data to 1.85 A have been collected. The space group is found to be C222(1) with a = 71.40 A, b = 138.88 A, and c = 115.66 A. Until now, a three-dimensional structure of a psychrophilic enzyme is lacking.  相似文献   

20.
An extracellular serine proteinase, lap2, from the psychrophilic antarctic yeast Leucosporidium antarcticum 171 was purified to homogeneity and characterized. The enzyme is a glycoprotein with a molecular mass of 34.4 kDa and an isoelectric point of pH 5.62. The proteinase is halotolerant, and its activity and stability are dependent neither on Ca2+ nor on other metal ions. Lap2 is a true psychrophilic enzyme because of low optimal temperature (25°C), poor thermal stability, relatively small values of free energy, enthalpy and entropy of activation, and high catalytic efficiency at 0–25°C. The 35 N-terminal amino acid residues of lap2 have homology with subtilases of the proteinase K subfamily (clan SB, family S8, subfamily C). The proteinase lap2 is the first psychrophilic subtilase in this family.Communicated by K. Horikoshi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号