首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Radially arranged cortical microtubules are a prominent feature of guard cells. We observed guard cells expressing GFP-tubulin (GFP-TUA6) with confocal microscopy and found recognizable changes in the appearance of microtubules when stomata open or close (Eisinger et al., 2012). In the present study, analysis of fluorescence distribution showed a dramatic increase in peak intensities of microtubule bundles within guard cells as stomata open. This increase was correlated with an increase in the total fluorescence that could be attributed to polymerized tubulin. Adjacent pavement cells did not show similar changes in peak intensities or integrated fluorescence when stomatal apertures changed. Imaging of RFP-tagged end binding protein 1 (EB1) and YFP-tagged α-tubulin expressed in the same cell revealed that the number of microtubules with growing ends remained constant, although the total amount of polymerized tubulin was higher in open than in closed guard cells. Taken together, these results indicate that the changes in microtubule array organization that are correlated with and required for normal guard cell function are characterized by changes in microtubule clustering or bundling.  相似文献   

2.
The development of stomatal guard cells is known to require cortical microtubules; however, it is not known if microtubules are also required by mature guard cells for stomatal function. To study the role of microtubules in guard cell function, epidermal peels of Vicia faba were subjected to conditions known to open or close stomata in the presence or absence of microtubule inhibitors. To verify the action of the inhibitors, microtubules in appropriately treated epidermal peels were localized by cryofixation followed by freeze substitution and embedding in butyl-methyl methacrylate. Mature guard cells had a radial array of microtubules, focused toward the thick cell wall of the pore, and the appearance of this array was the same for stomata remaining closed in darkness or induced to open by light. Treatment of epidermal peels with 1 mM colchicine for 1 h depolymerized nearly all cortical microtubules. Measurements of stomatal aperture showed that neither 1 mM colchicine nor 20 M taxol affected any of the responses tested: remaining closed in the dark, opening in response to light or fusicoccin, and closing in response to calcium and darkness. We conclude that intact microtubule arrays are not invariably required for guard cell function.  相似文献   

3.
Microtubules are essential for guard-cell function in Vicia and Arabidopsis   总被引:1,自引:0,他引:1  
Radially arranged cortical microtubules are a prominent feature of guard cells. Guard cells expressing GFP-tubulin showed consistent changes in the appearance of microtubules when stomata opened or closed. Guard cells showed fewer microtubule structures as stomata closed, whether induced by transfer to darkness, ABA, hydrogen peroxide, or sodium hydrogen carbonate. Guard cells kept in the dark (closed stomata) showed increases in microtubule structures and stomatal aperture on light treatment. GFP-EB1, marking microtubule growing plus ends, showed no change in number of plus ends or velocity of assembly on stomatal closure. Since the number of growing plus ends and the rate of plus-end growth did not change when microtubule structure numbers declined, microtubule instability and/or rearrangement must be responsible for the apparent loss of microtubules. Guard cells with closed stomata showed more cytosolic GFP-fluorescence than those with open stomata as cortical microtubules became disassembled, although with a large net loss in total fluorescence. Microtubule-targeted drugs blocked guard-cell function in Vicia and Arabidopsis. Oryzalin disrupted guard-cell microtubules and prevented stomatal opening and taxol stabilized guard-cell microtubules and delayed stomatal closure. Gas exchange measurements indicated that the transgenes for fluorescent-labeled proteins did not disrupt normal stomatal function. These dynamic changes in guard-cell microtubules combined with our inhibitor studies provide evidence for an active role of microtubules in guard-cell function.  相似文献   

4.
Summary Using fluorescent probes and confocal laser scanning microscopy we have examined the organisation of the microtubule and actin components of the cytoskeleton in kidney-shaped guard cells of six species of Selaginella. The stomata of Selaginella exhibit novel cytoskeletal arrangements, and at different developmental stages, display similarities in microtubule organisation to the two major types of stomata: grass (dumbbell-shaped) and non-grass (kidney-shaped). Initially, cortical microtubules and F-actin radiate from the stomatal pore and extend across the external and internal periclinal cell surfaces of the guard cells. As the stomata differentiate, the cytoskeleton reorients only along the internal periclinal walls. Reorganisation is synchronous in guard cells of the same stoma. Microtubules on the inner periclinal walls of the guard cells now emanate from areas of the ventral wall on either side of the pore and form concentric circles around the pore. The rearrangement of F-actin is similar to that of microtubules although F-actin is less well organised. Radial arrays of both microtubules and F-actin are maintained adjacent to the external surfaces. Subsequently, in two of the six species of Selaginella examined, microtubules on both the internal and external walls become oriented longitudinally and exhibit no association with the ventral wall. In the other four species, microtubules adjacent to the internal walls revert to the initial radial alignment. These findings may have implications in the development and evolution of the stomatal complex.Abbreviations GC guard cell - MT microtubule  相似文献   

5.
Summary In order to study developmental changes in microtubule organization attending the formation of a longitudinally oriented preprophase band, the guard mother cells ofAvena were examined using a new procedure for anti-tubulin immunocytochemistry on large epidermal segments. We found that the interphase band (IMB) of transverse cortical microtubules present in these cells following asymmetric division is replaced after subsidiary cell formation by mesh-like to radial microtubules that extend throughout the cytoplasm. Many of the Mts are also grouped in bundles. Gradually, this intermediate array is succeeded by longitudinal elements of the PPB. Thus, preprophase band formation is accompanied by a 90° shift in Mt orientation, with a radial arrangement serving as an intermediate stage. The micrographs are most consistent with the rearrangement of intact Mts, although changes in Mt assembly are possible as well. The role of the IMB in guard mother cells is also discussed.Abbreviations GMC guard mother cell - IMB interphase microtubule band - Mt microtubule - PPB preprophase band  相似文献   

6.
Pollen protoplasts were isolated from the mature pollen grains of Narcissus cyclamineus using cellulase Onozuka'R-10 and pectinase in Bs medium. The microtubule cytoskeleton in the pollen protoplasts was studied using immunofluorescence and confocal microscopy. In the cortical region there was a very complex microtubule network. The network contained numerous whirl-like arrays. The microtubule bundles in the whirl-like arrays were connected with each other by smaller bundles indicating that the arrangement of the whirl-like bundles were quite well organized and not at random. From the cortex to the centre of the protoplast another microtubule network having a structure different from the one in the cortical region was present. This network was much loosely packed than the cortical network. The arrangement of the microtubule bundles near the vegetative nucleus was again different. Numerous granules appeared outside the nuclear membrane. From these granules microtubule bundles radiated towards the cytoplasm. The arrangement of the microtubule network around the generative cell showed no specialized features. But inside the cell three types of microtubule arrays were present. 1. parallel arrays, 2. network, and 3. a mixture of the two. In the bursted pollen protoplast (as a result of osmotic shock treatment )some microtubule bundles could still be found attached to the ghost. The microtubule bundles associated with the ghost were much fragmented. But some still retained their branches and junctions. In the dry cleaved samples,a number of organelles still remained attached to the membrane and they included : microtubules, microfilaments, coated vesicles, endoplasmic reticulum and numerous honey-comb-like apparatus. The honey-comb-like apparatus was named as coated pits by Traas (1984). But we feel that it is more appropriate to call this organelle the honey-comb apparatus and we also believe that this organelle may be involved in microtubule and/or microfilament organization.  相似文献   

7.
Microtubule dynamics are essential for plant cell development and in producing responses to external stimuli. However, little is known about the regulation of microtubule dynamics or crosstalk between microtubule and stomatal movement. Here we identified microtubule reorganization as a crucial factor determining guard cell responses to dark and abscisic acid (ABA) signaling. As stomata opened, guard cells exhibited radially arranged cortical microtubules, which depolymerized into the cytosol when exposed to darkness and ABA. Suppression of microtubule disassembly by paclitaxel, a microtubule-stabilizing drug, significantly enhanced stomatal aperture under light, and partially blocked ABA- or darkness-induced stomatal closure. However, treatment with only the anti-microtubule drug, oryzalin, did not affect stomatal movement with or without external stimuli. Phosphatidic acid (PA) bound to a clade A type 2C protein phosphatase (PP2C), PP2CA, and deletion of PP2CA partially inhibited PA-induced microtubule depolymerization and stomatal closure. Moreover, microtubule reorganization was altered in the ABA-insensitive mutant pldα1, but not in the ABA-hypersensitive mutant pp2ca. We propose that a faithfully balanced reorganization of microtubules fulfills fundamental functions to enable the fast change of stomata in plant adaptive responses to developmental and environmental cues.  相似文献   

8.
Stomata of leaves from in vitro grown rose plantlets remain opened in the dark. The ultrastructure of their guard cells was studied after a 7 h light and a 7 h dark period, and compared to that of functional stomata from plants which have been acclimatized to greenhouse conditions. Qualitative and quantitative observations concerning the shape of the guard cells, mitochondria, plastids and starch grains, demonstrated the similarity in guard cell ultrastructure. The peculiarity of guard cell ultrastructure of in vitro cultured plants was the inability to close in the dark; vacuolar area was 40% of the whole guard cell area during both light and dark period whereas, in guard cells from greenhouse plants, the vacuolar area was 40% of the whole guard cell area during the light and only 25% during the dark period. These results indicate that stomata from in vitro plants are duly developed and possess an ultrastructure suitable for a typical functioning. The inability to close in the dark results from atypical water relation.  相似文献   

9.
Taxol is an antimitotic agent with the unique ability to induce the formation of parallel arrays of microtubules in cells. We have studied the effects of taxol on microtubule organization in the cultured macrophage-like cell line, J774.2, and shown that this novel reorganization of cellular microtubules is both a concentration-dependent and time-dependent phenomenon. In this paper, we have examined in detail the unusual microtubule arrays induced by taxol in colchicine-pretreated cells. Interphase cells which are pretreated with the irreversible inhibitor, colchicine, and then treated with taxol form a single microtubule aster associated with the nucleus and numerous discrete sites of apparent microtubule nucleation scattered throughout the cytoplasm. One interesting possibility is that these structures represent nucleation sites for taxol-induced bundles, a result supporting the notion that taxol-induced microtubule arrays are organized assemblies at what are perhaps secondary organizing sites.  相似文献   

10.
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.  相似文献   

11.
Stomatal regulation is essential for the growth of land plants. Pairs of guard cells that delineate the stomata perceive stimuli and respond to acquire the optimum aperture. The actin cytoskeleton participates in signaling pathways of the guard cell (Kim et al., 1995; Eun and Lee, 1997; Hwang et al., 1997). To identify the upstream molecules that regulate actin dynamics in plant cells, we immunoblotted proteins extracted from leaves ofCommelina commuais L. with the RhoA antibody, and identified one band of 26KD from the epidermis. Using immunofluorescence microscopy, we examined the subcellular distribution of the immuno-reactant(s) in guard cells. When stomata were open under light, the organization of the immuno-reactant(s) resembled the radial arrangement of cortical actin filaments of guard cells. Double-labeling of the guard cells, using the RhoA and actin antibodies as primary antibodies, showed that the immuno-reactant(s) of the RhoA antibody and actin filaments co-localized in the cortex of illuminated guard cells. However, the pattern was not found in guard cells when stomata were closed under darkness or by ABA, conditions under which cortical actin proteins are disassembled in guard cells. From these observations, we can suggest the possible presence of a RhoA-like protein and its involvement in the organization of the actin cytoskeleton in guard cells.  相似文献   

12.
Fluorescence microscopy indicated that chlorophyll was absentfrom epidermal and guard cells overlying all white areas andgreen areas (of certain leaves) in variegated leaves of Pelargoniumzonale, cv. Chelsea Gem. Stomata with chlorophyll-free guardcells, in general, responded normally to light and CO2 as gaugedby direct measurements of stomatal aperture and by transpirationalwater loss studies, although stomata from white regions of variegatedleaves were more reluctant to open than stomata from green regionsof the leaves. Thus, functional stomata without guard cell chloroplastshave been discovered in another genus, namely Pelargonium, besidesthat originally discovered in Paphiopedilum. When stomata withchlorophyll-free guard cells opened, K+ accumulated in the guardcells. This indicates that chloroplasts are not essential forthe normal functioning of stomata and that the energy sourcefor driving stomatal movements can come from sources other thanphotophosphorylation. Key words: Guard cell chloroplasts, Leaf chimera, Pelargonium, Stomata  相似文献   

13.
Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling.  相似文献   

14.
Summary The three-dimensional organization of microtubules in generative cells during their development in pollen grains of Hippeastrum vittatum and the dynamic changes that occur were studied by collecting large quantities of fixed and isolated generative cells for immunofluorescence microscopy. The framework configuration and the arrangement pattern of the microtubule organization was investigated. The microtubule framework changed in shape from being spherical at an early stage to being long spindle-shaped at maturity: various transitional forms were observed: ellipsoidal, pear-shaped and short spindle-shaped. The microtubule arrangement making up this framework changed correspondingly from the original network, which was random in distribution, to axially oriented long bundles via an intermediate pattern composed of a mixture of networks with long bundles. However, cells with the same framework configuration might be heterogeneous in microtubule arrangements.  相似文献   

15.
对叶子花(Bougainvillea spectabilis)正常叶和变态叶上气孔密度、气孔指数和保卫细胞大小进行了研究。结果表明:正常叶上表皮的表皮细胞为多边形,垂周壁平直;下表皮的表皮细胞为不规则型,垂周壁浅波状;气孔类型为不规则型。变态叶上表皮没有发现气孔,变态叶下表皮的表皮细胞垂周壁则由浅波形逐渐变为深波形,气孔类型为不规则型和轮列型。随着变态叶的发育,变态叶下表皮的气孔密度降低,气孔指数升高;变态叶保卫细胞的长增大,宽减小。变态叶的平均气孔密度和平均气孔指数明显低于正常叶。正常叶和变态叶的保卫细胞均呈肾形。  相似文献   

16.
Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.Abbreviations CLSM confocal laser scanning microscopy - EM electron microscopy - GC generative cell - GN generative nucleus - MT microtubule - SC sperm cell - SN sperm nucleus - VN vegetative nucleus  相似文献   

17.
植物细胞微管骨架的不同排列方式对细胞的生长分化及形态建成具有重要意义,微管的这种动态组织行为不仅需要自身的组成蛋白-微管蛋白(tubulin),还要有微管辅助蛋白MAPs(Microtubule-associated proteins)的参与[1,2]。即MAPs是一类能够与微管骨架特异结合并调节其动态装配过程及其结构、进而影响微管功能的蛋白大分子。其中,MAP65是最先在烟草悬浮细胞BY-2中纯化出来的、分子量约为65KDa的一个微管结合蛋白家族。  相似文献   

18.
Using immunofluorescent localization techniques and TEM methods, the organization of microtubule arrays during the cell cycle of root tip cells of Allium fistulosum L. was studied. There are four basic types of microtubule organization, namely, interphase cortical microtubule, pre-prophase band microtubule, spindle microtubule and phragmoplast microtubule, which constitute the typical microtubule cycle in dividing cells of higher plants. The fluorescent figures of microtubules observed under fluorescent microscope were explained and analysed by the ultrastractural informations of microtubules obtained from TEM.  相似文献   

19.
Summary Organizational changes in the microtubules of isolated generative cells of Allemanda neriifolia during mitosis were examined using anti--tubulin and confocal laser scanning microscopy. Due to an improved resolution and a lack of out-of-focus interference, the images of the mitotic cytoskeleton obtained using the confocal microscope are much clearer than those obtained using the non-confocal fluorescence systems. In the confocal microscope one can see clearly that the spindle-shaped interphase cells contain a cage-like cytoskeleton consisting of numerous longitudinally oriented microtubule bundles and some associated smaller bundles. At prophase, the shape of the cells invariably becomes spherical. The microtubule cytoskeleton inside the cells concomitantly changes into a less organized form — consisting of thick bundles, patches, and dots. This structural form is not very stable, and soon afterwards the cytoskeleton changes into a reticulate network. Then the nuclear envelope breaks down, and the microtubules become randomly dispersed throughout the cell. Afterwards, the microtubules reorganize themselves into a number of half-spindle-like structures, each possessing a microtubule-nucleating center. The locations of these centres mark out the positions of the presumptive spindle poles. Numerous microtubules radiate from these centres toward the opposite pole. At metaphase, the microtubules form a number of bipolar spindles. Each spindle has two half-spindles, and each half-spindle has a sharply focused microtubule centre at the pole region. From the centres, kinetochore and non-kinetochore microtubules radiate toward the opposite half-spindle. At anaphase A, sister chromatids separate, the cells elongate, and the kinetochore microtubules disappear; the non-kinetochore microtubules, however, remain, and a new array of microtubules, in the form of a cage, appears. The peripheral cage bundles and the non-kinetochore bundles coverge into a sharp point at the pole region. Later, at anaphase B the microtubule cytoskeleton undergoes reorganization giving rise to a new array of longitudinally oriented microtubule bundles in the cell centre and a cage-like cytoskeleton in the periphery. At telophase, some of the cells elongate further, but some become spherical. The microtubules in the central region of the elongated cell become partially disrupted due to the formation of a phragmoplast-junction-like structure in the mid-interzone region. The microtubule bundles at the periphery are spirally organized, and they appear not to be disrupted by the phragmoplast-like junction. The microtubules in the spherical telophase cells (unlike those seen in the elongated telophase cells) are arranged differently, and no phragmoplast-junction-like structure forms in the spherical cells. The structural and functional significances of some of these new features of the organization of the microtubule cytoskeleton as revealed by the confocal microscope are discussed.  相似文献   

20.
Interactions between microtubules and filamentous actin (F-actin) are crucial for many cellular processes, including cell locomotion and cytokinesis, but are poorly understood. To define the basic principles governing microtubule/F-actin interactions, we used dual-wavelength digital fluorescence and fluorescent speckle microscopy to analyze microtubules and F-actin labeled with spectrally distinct fluorophores in interphase Xenopus egg extracts. In the absence of microtubules, networks of F-actin bundles zippered together or exhibited serpentine gliding along the coverslip. When microtubules were nucleated from Xenopus sperm centrosomes, they were released and translocated away from the aster center. In the presence of microtubules, F-actin exhibited two distinct, microtubule-dependent motilities: rapid ( approximately 250-300 nm/s) jerking and slow ( approximately 50 nm/s), straight gliding. Microtubules remodeled the F-actin network, as F-actin jerking caused centrifugal clearing of F-actin from around aster centers. F-actin jerking occurred when F-actin bound to motile microtubules powered by cytoplasmic dynein. F-actin straight gliding occurred when F-actin bundles translocated along the microtubule lattice. These interactions required Xenopus cytosolic factors. Localization of myosin-II to F-actin suggested it may power F-actin zippering, while localization of myosin-V on microtubules suggested it could mediate interactions between microtubules and F-actin. We examine current models for cytokinesis and cell motility in light of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号