共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies for the detection and differentiation of faba bean necrotic yellows virus isolates 总被引:2,自引:0,他引:2
Murine monoclonal antibodies (MAbs) were produced for the detection of faba bean necrotic yellows virus (FBNYV), an isometric ssDNA virus belonging to a new, yet unnamed genus of plant viruses. A total of 19 FBNYV-specific MAbs were obtained from three fusion experiments and characterised by determining their immunoglobulin types and titres as well as their corresponding epitopes. At least six distinct epitopes were revealed on FBNYV particles of different virus isolates. Only two MAbs reacted with SDS-dissociated FBNYV virions in triple antibody sandwich (TAS)-ELISA and with viral capsid protein in Western blots. Almost all MAbs were more sensitive in detecting FBNYV in viruliferous aphids by TAS-ELISA than polyclonal anti-FBNYV IgG by double antibody sandwich ELISA and permitted virus detection in individual aphids even following short acquisition access feeding periods. Coat protein variation among FBNYV isolates and serological relatedness to taxonomically similar viruses was studied by determining the cross reactivity of these MAbs with several field isolates of FBNYV as well as with milk vetch dwarf (MDV), banana bunchy top (BBTV), and subterranean clover stunt (SCSV) viruses. Whereas none of the MAbs reacted with BBTV, only one reacted with SCSV, indicating that FBNYV and SCSV share a common epitope. By contrast, 16 of the 19 MAbs reacted with MDV, suggesting that FBNYV and MDV are serologically closely related and strains of the same virus. When all 19 MAbs produced were tested against a total of 107 samples of FBNYV collected during virus surveys in Egypt, Ethiopia, Jordan, Morocco and Syria, five MAbs showed differential reactions. While the majority of the samples reacted with all 19 MAbs, about 20% of the 107 FBNYV samples did not react with one and/or other of these five MAbs, permitting the differentiation of seven serotypes of FBNYV and suggesting a considerable coat protein variation in FBNYV isolates from the countries surveyed. The MDV isolate from Japan and five FBNYV samples from Ethiopia appeared to be the least closely related to typical FBNYV isolates by not reacting with three and four, respectively, of the five differentiating Mabs. 相似文献
2.
HUIJUAN GUO YUCHENG SUN YUEFEI LI XIANGHUI LIU PINGYAN WANG KEYAN ZHU‐SALZMAN FENG GE 《Plant, cell & environment》2014,37(9):2158-2168
Elevated CO2 compromises the resistance of leguminous plants against chewing insects, but little is known about whether elevated CO2 modifies the resistance against phloem‐sucking insects or whether it has contrasting effects on the resistance of legumes that differ in biological nitrogen fixation. We tested the hypothesis that the physical and chemical resistance against aphids would be increased in Jemalong (a wild type of Medicago truncatula) but would be decreased in dnf1 (a mutant without biological nitrogen fixation) by elevated CO2. The non‐glandular and glandular trichome density of Jemalong plants increased under elevated CO2, resulting in prolonged aphid probing. In contrast, dnf1 plants tended to decrease foliar trichome density under elevated CO2, resulting in less surface and epidermal resistance to aphids. Elevated CO2 enhanced the ineffective salicylic acid‐dependent defence pathway but decreased the effective jasmonic acid/ethylene‐dependent defence pathway in aphid‐infested Jemalong plants. Therefore, aphid probing time decreased and the duration of phloem sap ingestion increased on Jemalong under elevated CO2, which, in turn, increased aphid growth rate. Overall, our results suggest that elevated CO2 decreases the chemical resistance of wild‐type M. truncatula against aphids, and that the host's biological nitrogen fixation ability is central to this effect. 相似文献
3.
Gregory P. Walker Karla J. Medina‐Ortega 《Entomologia Experimentalis et Applicata》2012,144(3):326-335
Immediately after their stylets penetrate a phloem sieve element, aphids inject saliva into the sieve element for approximately 30–60 s before they begin to ingest phloem sap. This salivation period is recorded as waveform E1 in electrical penetration graph (EPG) monitoring of aphid feeding behavior. It has been hypothesized that the function of this initial period of phloem salivation is to reverse or prevent plugging of the sieve element by one of the plant's phloem defenses: formation of P‐protein plugs or callose synthesis in the sieve pores that connect adjacent sieve elements. This hypothesis was tested using the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), and faba bean, Vicia faba L. (Fabaceae), as a model system, and the results do not support the hypothesis. In legumes, such as faba bean, P‐protein plugs in sieve elements are formed by dispersal of proteinaceous bodies called forisomes. Contrary to the hypothesis, the great majority of sieve element penetrations by pea aphid stylets do not trigger forisome dispersal. Thirteen sieve elements were cryofixed early in phloem phase before the aphids could complete their salivation period and the forisomes were not dispersed in any of the 13 samples. However, in these samples, the aphids completed on average a little over half of their normal E1 salivation period before they were cryofixed. Thus, it is possible that sieve element penetration triggered forisome dispersal in these samples but the abbreviated period of salivation was still sufficient to reverse dispersal. To rule out this possibility, 17 sieve elements were cryofixed during R‐pds, which are an EPG waveform associated with sieve element penetration but without the characteristic E1 salivation that occurs during phloem phase. In 16 of the 17 samples, the forisomes were not dispersed. Thus, faba bean sieve elements usually do not form P‐protein plugs in response to penetration by pea aphid stylets. Consequently, the characteristic E1 salivation that occurs at the start of each phloem phase does not seem to be necessary to prevent a plugging response because penetration of sieve elements during R‐pds does not trigger forisome dispersal despite the absence of E1 salivation. Furthermore, as P‐protein plugs do not normally form in response to sieve element penetration, E1 salivation that occurs at the start of each phloem phase is not a response to development of a P‐protein plug. Thus, the E1 salivation period at the beginning of the phloem phase appears to have function(s) unrelated to phloem sealing. 相似文献
4.
A.C. Udayashankar S. Chandra Nayaka S.R. Niranjana C.N. Mortensen 《Archives Of Phytopathology And Plant Protection》2013,46(13):1509-1518
The strains of Bean common mosaic virus (BCMV) and blackeye cowpea mosaic (BICM), genus Potyvirus, were detected from 25 common bean and 14 black gram seeds among 142 seed samples collected from different legume-growing regions of India. The samples were subjected to a growing-on test, an indicator plant test, an electron microscopic observations, an enzyme linked immunosorbent assay and an immunocapture RT-PCR. The incidence of the two tested viruses in common bean and black gram seed samples was 1–6% and 0.5–3.5%, respectively in growing-on test evaluations. Electron microscopic observations revealed filamentous virion particles from the leaves of plants showing characteristic virus disease symptoms in growing-on and host inoculation tests. The identity of the strains was confirmed by immunocapture RT-PCR, with a final amplification product of approximately 700 bp for BCMV and BCMV–BICM. The complete identity of the two viruses was further confirmed by nucleotide sequencing of the partial coat protein and 3′-UTR regions. The sequences of the four BCMV and BCMV–BICM isolates each consisted of 583–622 and 550–577 nucleotides. The present report confirms the widespread nature of these two serious potyviruses in the two most important legume crops in India. 相似文献
5.
Nanoviruses are a family of plant viruses that possess a genome of multiple circular single-stranded DNA (ssDNA) components and are strikingly similar in their replication mode to the plant geminiviruses and to the circoviruses that infect birds or mammals. These viruses multiply by rolling circle replication using virus-encoded multifunctional replication initiator proteins (Rep proteins) that catalyze the initiation of replication on a double-stranded DNA (dsDNA) intermediate and the resolution of the ssDNA into circles. Here we report the solution NMR three-dimensional structure of the endonuclease domain from the master Rep (M-Rep) protein of faba bean necrotic yellows virus (FBNYV), a representative of the nanoviruses. The domain comprises amino acids 2-95 (M-Rep2-95), and its global fold is similar to those previously described for the gemini- and circovirus Rep endonuclease domains, consisting of a central 5-stranded antiparallel beta-sheet covered on one side by an alpha-helix and irregular loops and on the other, more open side of the domain, by an alpha-helix containing the catalytic tyrosine residue (the catalytic helix). Longer domain constructs extending to amino acids 117 and 124 were also characterized. They contain an additional alpha-helix, are monomeric, and exhibit catalytic activity indistinguishable from that of M-Rep2-95. The binding site for the catalytic metal was identified by paramagnetic broadening and maps to residues on the exposed face of the central beta-sheet. A comparison with the previously determined Rep endonuclease domain structures of tomato yellow leaf curl Sardinia virus (TYLCSV), a geminivirus, and that of porcine circovirus type 2 (PCV2) Rep allows the identification of a positively charged surface that is most likely involved in dsDNA binding, and reveals common features shared by all endonuclease domains of nanovirus, geminivirus, and circovirus Rep proteins. 相似文献
6.
7.
Net CO2 exchange rates and dark respiration rates were determined for single attached legume leaves (leaflets) after 6 to 9 days of aphid infestation. Plant-aphid combinations used were broad bean ( Vicia faba L. cv. Aquadulce) and cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona)] infested with cowpea aphids ( Aphis craccivora Koch) and broad bean and garden pea ( Pisum sativum L. cv. Victory Freezer) infested with pea aphids [ Acyrthosiphon pisum (Harris)]. Leaves from all aphid-infested plants had significantly greater net CO2 exchange rates in the light than their respective controls and rates of dark respiration of leaves from infested cowpea and garden pea were also significantly greater than those of controls. Dark respiration, as a percentage of net CO2 exchange rates in the light, was greater in aphid-infested than in control plants. When the mean net daily carbon gain was calculated for the leaves of each plant-aphid combination, leaves from aphid-infested plants had the greatest gain. It is proposed that net CO2 , exchange rates increased due to increased sink demand and dark respiration rates increased to meet the increased energy requirements of phloem loading and cellular maintenance associated with aphid feeding. The apparent compensatory carbon gain of infested leaves was consumed by the aphids. 相似文献
8.
Partial purification and characterization of NADH-glutamate synthase from faba bean (Vicia faba) root nodules 总被引:1,自引:0,他引:1
Maria del Pilar Cordovilla Josefa Prez Francisco Ligero Carmen Lluch Victoriano Valpuesta 《Plant science》2000,150(2):121-128
The NADH-dependent glutamate synthase (EC 1.4.1.14) from the plant fraction of N2-fixing faba bean (Vicia faba) nodules has been purified 74-fold to a specific activity of about 3 μmol min−1 mg protein−1 with a final yield of 32%. The NADH-GOGAT activity was associated with a single form of the enzyme that behaved as a monomeric protein with a subunit molecular weight of 195 kDa and a native molecular weight from 222 to 236 kDa estimated by gel filtration or PAGE, respectively. The NADH-GOGAT band on SDS-PAGE was cut out and used to produce antibodies. Western blots of SDS-PAGE of crude nodule proteins revealed a 195 kDa polypeptide in root extracts but not in those of leaves or bacteroids. The antiserum also cross-reacted with a polypeptide of camparable molecular weight (195 kDa) from both amide and ureide transporting species legume nodules, indicating that some antigenic epitopes have been conserved between nodule NADH-GOGAT of different species. 相似文献
9.
10.
11.
《Animal : an international journal of animal bioscience》2021,15(7):100300
There is increasing interest in using locally produced protein supplements in dairy cow feeding. The objective of this experiment was to compare rapeseed meal (RSM), faba beans (FBs) and blue lupin seeds (BL) at isonitrogenous amounts as supplements of grass silage and cereal based diets. A control diet (CON) without protein supplement was included in the experiment. Four lactating Nordic Red cows were used in a 4 × 4 Latin Square design with four 21 d periods. The milk production increased with protein supplementation but when expressed as energy corrected milk, the response disappeared due to substantially higher milk fat concentration with CON compared to protein supplemented diets. Milk protein output increased by 8.5, 4.4 and 2.7% when RSM, FB and BL were compared to CON. The main changes in rumen fermentation were the higher propionate and lower butyrate proportion of total rumen volatile fatty acids when the protein supplemented diets were compared to CON. Protein supplementation also clearly increased the ruminal ammonia N concentration. Protein supplementation improved diet organic matter and NDF digestibility but efficiency of microbial protein synthesis per kg organic matter truly digested was not affected. Flow of microbial N was greater when FB compared to BL was fed. All protein supplements decreased the efficiency of nitrogen use in milk production. The marginal efficiency (amount of additional feed protein captured in milk protein) was 0.110, 0.062 and 0.045 for RSM, FB and BL, respectively. The current study supports the evidence that RSM is a good protein supplement for dairy cows, and this effect was at least partly mediated by the lower rumen degradability of RSM protein compared to FB and BL. The relatively small production responses to protein supplementation with simultaneous decrease in nitrogen use efficiency in milk production suggest that economic and environmental consequences of protein feeding need to be carefully considered. 相似文献
12.
13.
Hugo Math‐Hubert Heidi Kaech Pravin Ganesanandamoorthy Christoph Vorburger 《Evolution; international journal of organic evolution》2019,73(7):1466-1481
The heritable endosymbiont Spiroplasma infects many insects and has repeatedly evolved the ability to protect its hosts against different parasites. Defenses do not come for free to the host, and theory predicts that more costly symbionts need to provide stronger benefits to persist in host populations. We investigated the costs and benefits of Spiroplasma infections in pea aphids (Acyrthosiphon pisum), testing 12 bacterial strains from three different clades. Virtually all strains decreased aphid lifespan and reproduction, but only two had a (weak) protective effect against the parasitoid Aphidius ervi, an important natural enemy of pea aphids. Spiroplasma‐induced fitness costs were variable, with strains from the most slowly evolving clade reaching higher titers and curtailing aphid lifespan more strongly than other strains. Some Spiroplasma strains shared their host with a second endosymbiont, Regiella insecticola. Although the result of an unfortunate handling error, these co‐infections proved instructive, because they showed that the cost of infection with Spiroplasma may be attenuated in the presence of Regiella. These results suggest that mechanisms other than protection against A. ervi maintain pea aphid infections with diverse strains of Spiroplasma, and that studying them in isolation will not provide a complete picture of their effects on host fitness. 相似文献
14.
Thibaut Jousseaume Jean‐Christophe Simon Akiko Sugio Stéphanie Morlière Takema Fukatsu Tsutomu Tsuchida Yannick Outreman 《Insect Science》2017,24(5):798-808
Symbiotic associations between microbes and insects are widespread, and it is frequent that several symbionts share the same host individual. Hence, interactions can occur between these symbionts, influencing their respective abundance within the host with consequences on its phenotype. Here, we investigate the effects of multiple infections in the pea aphid, Acyrthosiphon pisum, which is the host of an obligatory and several facultative symbionts. In particular, we study the influence of a coinfection with 2 protective symbionts: Hamiltonella defensa, which confers protection against parasitoids, and Rickettsiella viridis, which provides protection against fungal pathogens and predators. The effects of Hamiltonella‐Rickettsiella coinfection on the respective abundance of the symbionts, host fitness and efficacy of enemy protection were studied. Asymmetrical interactions between the 2 protective symbionts have been found: when they coinfect the same aphid individuals, the Rickettsiella infection affected Hamiltonella abundance within hosts but not the Hamiltonella‐mediated protective phenotype while the Hamiltonella infection negatively influences the Rickettsiella‐mediated protective phenotype but not its abundance. Harboring the 2 protective symbionts also reduced the survival and fecundity of host individuals. Overall, this work highlights the effects of multiple infections on symbiont abundances and host traits that are likely to impact the maintenance of the symbiotic associations in natural habitats. 相似文献
15.
16.
Human‐assisted introductions, including those in the context of biological control, are considered to be one of the most important factors of global environmental change. However, the mechanisms underlying environmental changes, such as a decrease in the relative abundance of native species, are poorly understood. Since the introduction of the ladybird beetle, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), in Chile in the 1970s for biological control of aphids, a reduction in the relative abundance of the native ladybird beetle Eriopis connexa (Germar) has been noticed. To explore the role of cannibalism, intraguild predation (IGP) or competition as possible mechanisms that might increase dominance of H. variegata over E. connexa, several laboratory experiments were carried out. The native and the exotic species were very similar in their voracity and biotic interactions. Although H. variegata was able to maintain constant reproductive performance, E. connexa reproduction decreased at lower densities of aphids, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). The impacts of cannibalism, IGP, and competition exerted by these species were very symmetrical in both larvae and adults. We conclude that these biotic factors may not fully explain the increase in relative abundance of H. variegata. The higher sensitivity of E. connexa to prey patch size, along with other factors such as chemical‐mediated negative interspecific interactions may be operating in alfalfa fields, changing the composition of associated coccinellid assemblages. 相似文献
17.
Abstract 1 Pandora neoaphidis is an important aphid‐specific fungal pathogen in temperate agroecosystems. Laboratory studies were carried out to obtain baseline data on factors that may affect its performance in conservation biological control. 2 Virulence of P. neoaphidis was assessed in dose–response bioassays against Microlophium carnosum on nettle, Uroleucon jaceae on knapweed, Acyrthosiphon pisum on bean and bird's‐foot trefoil Lotus corniculatus, and Metopolophium dirhodum on barley and Yorkshire fog Holcus lanatus. The most susceptible aphid was A. pisum feeding on bean with an LD50 of 19 conidia per mm2, whereas U. jaceae had an LD50 of 104 conidia per mm2 and was least susceptible to infection. 3 The presence of foraging adult ladybirds, Coccinella septempunctata, increased transmission of P. neoaphidis from infected cadavers to apterae of M. carnosum, U. jacea, and A. pisum by 7–30% at the largest cadaver density tested. Adult coccinellids that had previously foraged on nettle, knapweed, bean or bird's‐foot trefoil transfered conidia to A. pisum on bean and induced infections in 2–13% of aphids. 4 Conidia of P. neoaphidis dispersed passively in the airstream from sporulating M. carnosum cadavers on nettle plants and initiated infections in A. pisum colonies feeding on bean (4–33%) or M. dirhodum on barley (3%) located within 1.0 m of the nettle source. 5 The results suggest that M. carnosum and A. pisum may be more useful as reservoirs for P. neoaphidis in noncrop and crop areas than U. jaceae or M. dirhodum, and infection and dispersal between habitats could be enhanced in the presence of coccinellids. 相似文献
18.
Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for the generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties owing to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that are effective, safe, low cost, and amenable to large-scale manufacturing. 相似文献
19.
Basic winged bean agglutinin binds A-blood group substance with higher affinity and B-blood group substance with lesser affinity. It does not bind the O substance. The crystal structures of the lectin, complexed with A-reactive and B-reactive di and tri saccharides, have been determined. In addition, the complexes of the lectin with fucosylated A-trisaccharides and B-trisaccharides and with a variant of the A-trisaccharide have been modeled. These structures and models provide valuable insights into the structural basis of blood group specificities. All the four carbohydrate binding loops of the lectin contribute to the primary combining site while the loop of variable length contributes to the secondary binding site. In a significant advance to the current understanding, the interactions at the secondary binding site also contribute substantially, albeit in a subtle manner, to determine the blood group specificity. Compared with the interactions of the B-trisaccharide with the lectin, the third sugar residue of the A-reactive trisacharide forms an additional hydrogen bond with a lysine residue in the variable loop. In the former, the formation of such a hydrogen bond is prevented by a shift in the orientation of third sugar resulting from an internal hydrogen bond in it. The formation of this bond is also facilitated by an interaction dependent change in the rotamer conformation of the lysyl residue of the variable loop. Thus, the difference in the interactions at the secondary site is generated by coordinated movements in the ligand as well as the protein. A comparison of the crystal structure and the model of the complex involving the variant of the A-trisaccharide results in the delineation of the relative contributions of the interactions at the primary and the secondary sites in determining blood group specificity. 相似文献
20.
The combined effect of Vesicular Arbuscular Mycorrhizae (VAM) and Rhizobium on the cold season legumes, lentil and faba bean,
as well as on summer legume, soybean, were studied in soils with low indeginous VA mycorrhizal spores. Inoculation of the
plant with VA mycorrhizal fungi increased the level of mycorrhizal root infection of lentil, faba bean and soybean. The inoculation
with Rhizobium had no significant effect on VA mycorrhizal infection percent, but VA mycorrhizal inoculation increased nodulation
of the three legumes.
The inoculation with Rhizobium alone significantly increased plant dry weight and N content of lentil and faba bean as well
as seed yield of soybean. VA mycorrhizal inoculation also significantly increased plant dry weight and phosphorus content
of the plants as did fertilization with superphosphate. Rock phosphate fertilization, however, had no significant effect on
plant growth or phosphorus uptake. The addition of rock phosphate in combination with VA mycorrhizal inoculation significantly
increased plant dry weight and P uptake of the plants.
The dual inoculation with both rhizobia and mycorrhizae induced more significant increases in plant dry weight, N and P content
of lentil and faba bean as well as seed yield of soybean than inoculation with either VA mycorrhizae or Rhizobium alone. 相似文献