首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition from G1 to S phase of the cell cycle may be regulated by modification of proteins which are essential for initiating DNA replication. One of the first events during initiation is to unwind the origin DNA and this requires a single-stranded DNA binding protein. RPA, a highly conserved multi-subunit single-stranded DNA binding protein, was first identified as a cellular protein necessary for the initiation of SV40 DNA replication. The 32 kDa subunit of RPA has been shown to be phosphorylated at the start of S phase. Using SV40 replication as a model, we have reproduced in vitro the S phase-dependent phosphorylation of RPA-32 and show that it occurs specifically within the replication initiation complex. Phosphorylated RPA-32 is predominantly associated with DNA. Phosphorylation is not a pre-requisite for association with DNA, but occurs after RPA binds to single-stranded DNA formed at the origin during the initiation phase. The protein kinase(s) which phosphorylates RPA-32 is present at all stages of the cell cycle but RPA-32 does not bind to the SV40 origin or become phosphorylated in extracts from G1 cells. Therefore, the cell cycle-dependent phosphorylation of RPA-32 may be regulated by its binding to single-stranded origin DNA during replication initiation.  相似文献   

2.
Replication protein A (RPA), the trimeric single-stranded DNA-binding protein complex of eukaryotic cells, is important to DNA replication and repair. Phosphorylation of the p34 subunit of RPA is modulated by the cell cycle, occurring during S and G2 but not during G1. The function of phosphorylated p34 remains unknown. We show that RPA p34 phosphorylation is significantly induced by ionizing radiation. The phosphorylated form, p36, is similar if not identical to the phosphorylated S/G2 form. gamma-Irradiation-induced phosphorylation occurs without new protein synthesis and in cells in G1. Mutation of cdc2-type protein kinase phosphorylation sites in p34 eliminates the ionizing radiation response. The gamma-irradiation-induced phosphorylation of RPA p34 is delayed in cells from ataxia telangiectasia, a human inherited disease conferring DNA repair defects and early-onset tumorigenesis. UV-induced phosphorylation of RPA p34 occurs less rapidly than gamma-irradiation-induced phosphorylation but is kinetically similar between ataxia telangiectasia and normal cells. This is the first time that modification of a repair protein, RPA, has been linked with a DNA damage response and suggests that phosphorylation may play a role in regulating DNA repair pathways.  相似文献   

3.
The cell cycle is driven by the sequential activation of a family of cyclin-dependent kinases (CDK) in association with cyclins. In mammalian cells the timing of activation of cyclin A-associated kinase activity coincides with the onset of DNA synthesis in S-phase. Using in vitro replication of SV40 origin-containing DNA as a model system, we have analyzed the proteins associated with DNA during initiation of DNA replication in S-phase cell extracts. This analysis reveals that, in addition to replication initiation proteins, cyclin A and cdk2 are also specifically associated with DNA. The association of cyclin A and cdk2 with DNA during initiation is cell cycle regulated and occurs specifically in the presence of SV40 origin-containing plasmid and SV40 T antigen (the viral replication initiator protein). The interactions among proteins involved in initiation play an important role in DNA replication. We therefore investigated the ability of cyclin A and cdk2 to associate with replication initiation proteins. Under replication initiation conditions, cyclin A and cdk2 from S-phase extracts specifically associate with SV40 T antigen. Further, the interaction of cyclin A-cdk2 with SV40 T antigen is mediated via cyclin A, and purified recombinant cyclin A associates directly with SV40 T antigen. Taken together, our results suggest that cyclin A and cdk2 are components of the SV40 replication initiation complex, and that protein-protein interactions between cyclin A-cdk2 and T antigen may facilitate the association of cyclin A-cdk2 with the complex. Received: 30 July 1996; in revised form: 25 September 1996 / Accepted: 8 October 1996  相似文献   

4.
The cellular single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) becomes phosphorylated periodically during the normal cell cycle and also in response to DNA damage. In Saccharomyces cerevisiae, RPA phosphorylation requires the checkpoint protein Mec1, a protein kinase homologous in structure and function to human ATR. We confirm here that immunocomplexes containing a tagged version of Mec1 catalyze phosphorylation of purified RPA, likely reflecting an RPA kinase activity intrinsic to Mec1. A significant stimulation of this activity is observed upon the addition of covalently closed ssDNA derived from the bacteriophage M13. This stimulation is not observed with mutant RPA deficient for DNA binding, indicating that DNA-bound RPA is a preferred substrate. Stimulation is also observed upon the addition of linear ssDNA homopolymers or hydrolyzed M13 ssDNA. In contrast to circular ssDNA, these DNA cofactors stimulate both wild type and mutant RPA phosphorylation. This finding suggests that linear ssDNA can also stimulate Mec1-mediated RPA phosphorylation by activating Mec1 or an associated protein. Although the Mec1-interacting protein Ddc2 is required for RPA phosphorylation in vivo, it is required for neither basal nor ssDNA-stimulated RPA phosphorylation in vitro. Therefore, activation of Mec1-mediated RPA phosphorylation by either circular or linear ssDNA does not operate through Ddc2. Our results provide insight into the mechanisms that function in vivo to specifically induce RPA phosphorylation upon initiation of DNA replication, repair, or recombination.  相似文献   

5.
We have described previously that, during S-phase, human DNA ligase I is phosphorylated on Ser66, a casein kinase II site. Here we investigate the phosphorylation status of DNA ligase I during the cell cycle by gel shift analysis and electrospray mass spectrometry. We show that three residues (Ser51, Ser76, and Ser91), which are part of cyclin-dependent kinase sites, are phosphorylated in a cell cycle-dependent manner. Phosphorylation of Ser91 occurs at G1/S transition and depends on a cyclin binding site in the C-terminal part of the protein. This modification is required for the ensuing phosphorylation of Ser76 detectable in G2/M extracts. The substitution of serines at positions 51, 66, 76, and 91 with aspartic acid to mimic the phosphorylated enzyme hampers the association of DNA ligase I with the replication foci. We suggest that the phosphorylation of DNA ligase I and possibly other replicative enzymes is part of the mechanism that directs the disassembly of the replication machinery at the completion of S-phase.  相似文献   

6.
Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates.   总被引:69,自引:19,他引:50       下载免费PDF全文
C Norbury  J Blow    P Nurse 《The EMBO journal》1991,10(11):3321-3329
The p34cdc2 protein kinase is a conserved regulator of the eukaryotic cell cycle. Here we show that residues Thr14 and Tyr15 of mouse p34cdc2 become phosphorylated as mouse fibroblasts proceed through the cell cycle. We have mutated these residues and measured protein kinase activity of the p34cdc2 variants in a Xenopus egg extract. Phosphorylation of residues 14 and 15, which lie within the presumptive ATP-binding region of p34cdc2, normally restrains the protein kinase until it is specifically dephosphorylated and activated at the G2/M transition. Regulation by dephosphorylation of Tyr15 is conserved from fission yeast to mammals, while an extra level of regulation of mammalian p34cdc2 involves Thr14 dephosphorylation. In the absence of phosphorylation on these two residues, the kinase still requires cyclin B protein for its activation. Inhibition of DNA synthesis inhibits activation of wild-type p34cdc2 in the Xenopus system, but a mutant which cannot be phosphorylated at residues 14 and 15 escapes this inhibition, suggesting that these phosphorylation events form part of the pathway linking completion of DNA replication to initiation of mitosis.  相似文献   

7.
The single-stranded DNA-binding protein, Replication Protein A (RPA), is a heterotrimeric complex with subunits of 70, 32 and 14 kDa involved in DNA metabolism. RPA may be a target for cellular regulation; the 32 kDa subunit (RPA32) is phosphorylated by several cellular kinases including the DNA-dependent protein kinase (DNA-PK). We have purified a mutant hRPA complex lacking amino acids 1-33 of RPA32 (rhRPA x 32delta1-33). This mutant bound ssDNA and supported DNA replication; however, rhRPA x 32delta1-33 was not phosphorylated under replication conditions or directly by DNA-PK. Proteolytic mapping revealed that all the sites phosphorylated by DNA-PK are contained on residues 1-33 of RPA32. When wild-type RPA was treated with DNA-PK and the mixture added to SV40 replication assays, DNA replication was supported. In contrast, when rhRPA x 32delta1-33 was treated with DNA-PK, DNA replication was strongly inhibited. Because untreated rhRPA x 32delta1-33 is fully functional, this suggests that the N-terminus of RPA is needed to overcome inhibitory effects of DNA-PK on other components of the DNA replication system. Thus, phosphorylation of RPA may modulate DNA replication indirectly, through interactions with other proteins whose activity is modulated by phosphorylation.  相似文献   

8.
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding complex comprised of 70-kDa (RPA1), 32-kDa (RPA2), and 14-kDa (RPA3) subunits that is essential for DNA replication, recombination, and repair in eukaryotes. In addition, recent studies using vertebrate model systems have suggested an important role for RPA in the initiation of cell cycle checkpoints following exposure to DNA replication stress. Specifically, RPA has been implicated in the recruitment and activation of the ATM-Rad3-related protein kinase, ATR, which in conjunction with the related kinase, ATM (ataxia-telangiectasia-mutated), transmits checkpoint signals via the phosphorylation of downstream effectors. In this report, we have explored the effects of RPA insufficiency on DNA replication, cell survival, and ATM/ATR-dependent signal transduction in response to genotoxic stress. RNA interference-mediated suppression of RPA1 caused a slowing of S phase progression, G2/M cell cycle arrest, and apoptosis in HeLa cells. RPA-deficient cells demonstrated high levels of spontaneous DNA damage and constitutive activation of ATM, which was responsible for the terminal G2/M arrest phenotype. Surprisingly, we found that neither RPA1 nor RPA2 were essential for the hydroxyurea- or UV-induced phosphorylation of the ATR substrates CHK1 and CREB (cyclic AMP-response element-binding protein). These findings reveal that RPA is required for genomic stability and suggest that activation of ATR can occur through RPA-independent pathways.  相似文献   

9.
DNA polymerase α-primase is known to be phosphorylated in human and yeast cells in a cell cycle-dependent manner on the p180 and p68 subunits. Here we show that phosphorylation of purified human DNA polymerase α-primase by purified cyclin A/cdk2 in vitro reduced its ability to initiate simian virus 40 (SV40) DNA replication in vitro, while phosphorylation by cyclin E/cdk2 stimulated its initiation activity. Tryptic phosphopeptide mapping revealed a family of p68 peptides that was modified well by cyclin A/cdk2 and poorly by cyclin E/cdk2. The p180 phosphopeptides were identical with both kinases. By mass spectrometry, the p68 peptide family was identified as residues 141 to 160. Cyclin A/cdk2- and cyclin A/cdc2-modified p68 also displayed a phosphorylation-dependent shift to slower electrophoretic mobility. Mutation of the four putative phosphorylation sites within p68 peptide residues 141 to 160 prevented its phosphorylation by cyclin A/cdk2 and the inhibition of replication activity. Phosphopeptide maps of the p68 subunit of DNA polymerase α-primase from human cells, synchronized and labeled in G1/S and in G2, revealed a cyclin E/cdk2-like pattern in G1/S and a cyclin A/cdk2-like pattern in G2. The slower-electrophoretic-mobility form of p68 was absent in human cells in G1/S and appeared as the cells entered G2/M. Consistent with this, the ability of DNA polymerase α-primase isolated from synchronized human cells to initiate SV40 replication was maximal in G1/S, decreased as the cells completed S phase, and reached a minimum in G2/M. These results suggest that the replication activity of DNA polymerase α-primase in human cells is regulated by phosphorylation in a cell cycle-dependent manner.  相似文献   

10.
DNA replication in eukaryotic cells is restricted to the S-phase of the cell cycle. In a cell-free replication model system, using SV40 origin-containing DNA, extracts from G1 cells are inefficient in supporting DNA replication. We have undertaken a detailed analysis of the subcellular localization of replication proteins and cell cycle regulators to determine when these proteins are present in the nucleus and therefore available for DNA replication. Cyclin A and cdk2 have been implicated in regulating DNA replication, and may be responsible for activating components of the DNA replication mitiation complex on entry into S-phase. G1 cell extracts used for in vitro replication contain the replication proteins RPA (the eukaryotic single-stranded DNA binding protein) and DNA polymerase as well as cdk2, but lack cyclin A. On localizing these components in G1 cells we find that both RPA and DNA polymerase are present as nuclear proteins, while cdk2 is primarily cytoplasmic and there is no detectable cyclin A. An apparent change in the distribution of these proteins occurs as the cell enters S-phase. Cyclin A becomes abundant and both cyclin A and cdk2 become localized to the nucleus in S-phase. In contrast, the RPA-34 and RPA-70 subunits of RPA, which are already nuclear, undergo a transition from the uniform nuclear distribution observed during G1, and now display a distinct punctate nuclear pattern. The initiation of DNA replication therefore most likely occurs by modification and activation of these replication initiation proteins rather than by their recruitment to the nuclear compartment.  相似文献   

11.
The ability of simian virus 40 (SV40) large T antigen to catalyze the initiation of viral DNA replication is regulated by its phosphorylation state. Previous studies have identified the free catalytic subunit of protein phosphatase 2A (PP2Ac) as the cellular phosphatase which can remove inhibitory phosphoryl groups from serines 120 and 123. The catalytic C subunit exists in the cell complexed with a 65-kDa A subunit and one of several B subunits. To determine if any of the holoenzymes could activate T antigen, we tested the ability of the heterodimeric AC and two heterotrimeric ABC forms to stimulate T-antigen function in unwinding the origin of SV40 DNA replication. Only free catalytic subunit C and the heterotrimeric form with a 72-kDa B subunit (PP2A-T72) could stimulate T-antigen-dependent origin unwinding. Both the dimeric form (PP2A-D) and the heterotrimer with a 55-kDa B subunit (PP2A-T55) actively inhibited T-antigen function. We found that PP2A-T72 activated T antigen by dephosphorylating serines 120 and 123, while PP2A-D and PP2A-T55 inactivated T antigen by dephosphorylating the p34cdc2 target site, threonine 124. Thus, alterations in the subunit composition of PP2A holoenzymes have significant functional consequences for the initiation of in vitro SV40 DNA replication. The regulatory B subunits of PP2A may play a role in regulating SV40 DNA replication in infected cells as well.  相似文献   

12.
P R Clarke  D Leiss  M Pagano    E Karsenti 《The EMBO journal》1992,11(5):1751-1761
Cyclins are proteins which are synthesized and degraded in a cell cycle-dependent fashion and form integral regulatory subunits of protein kinase complexes involved in the regulation of the cell cycle. The best known catalytic subunit of a cyclin-dependent protein kinase complex is p34cdc2. In the cell, cyclins A and B are synthesized at different stages of the cell cycle and induce protein kinase activation with different kinetics. The kinetics of activation can be reproduced and studied in extracts of Xenopus eggs to which bacterially produced cyclins are added. In this paper we report that in egg extracts, both cyclin A and cyclin B associate with and activate the same catalytic subunit, p34cdc2. In addition, cyclin A binds a less abundant p33 protein kinase related to p34cdc2, the product of the cdk2/Eg1 gene. When complexed to cyclin B, p34cdc2 is subject to transient inhibition by tyrosine phosphorylation, producing a lag between the addition of cyclin and kinase activation. In contrast, p34cdc2 is only weakly tyrosine phosphorylated when bound to cyclin A and activates rapidly. This finding shows that a given kinase catalytic subunit can be regulated in a different manner depending on the nature of the regulatory subunit to which it binds. Tyrosine phosphorylation of p34cdc2 when complexed to cyclin B provides an inhibitory check on the activation of the M phase inducing protein kinase, allowing the coupling of processes such as DNA replication to the onset of metaphase. Our results suggest that, at least in the early Xenopus embryo, cyclin A-dependent protein kinases may not be subject to this checkpoint and are regulated primarily at the level of cyclin translation.  相似文献   

13.
Cell cycle-dependent phosphorylation of human DNA polymerase alpha   总被引:13,自引:0,他引:13  
The expression of DNA polymerase alpha, a principal chromosome replication enzyme, is constitutive during the cell cycle. We show in this report that DNA polymerase alpha catalytic polypeptide p180 is phosphorylated throughout the cell cycle and is hyperphosphorylated in G2/M phase. The p70 subunit is phosphorylated only in G2/M phase. This cell cycle-dependent phosphorylation is due to cell cycle-dependent kinase(s) and not to phosphatase(s). In vitro evidence indicates the involvement of p34cdc2 kinase in the mitotic phosphorylation of DNA polymerase alpha. Tryptic phosphopeptide maps demonstrate that peptides phosphorylated in vitro are identical to those phosphorylated in vivo. DNA polymerase alpha from mitotic cells is found to have lower affinity for single-stranded DNA than does polymerase alpha from G1/S phase cells. These results imply that the mitotic phosphorylation of polymerase alpha may affect its physical interaction with other replicative proteins and/or with DNA at the replication fork.  相似文献   

14.
The initiation of simian virus 40 (SV40) DNA replication is regulated by the phosphorylation state of the viral initiator protein, large T antigen. We describe the purification from HeLa cell nuclei of a 35-kDa serine/threonine protein kinase that phosphorylates T antigen at sites that are phosphorylated in vivo and thereby inhibits its ability to initiate SV40 DNA replication. The inhibition of both origin unwinding and DNA replication by the kinase is reversed by protein phosphatase 2A. As determined by molecular weight, substrate specificity, autophosphorylation, immunoreactivity, and limited sequence analysis, this kinase appears to be identical to casein kinase I, a ubiquitous serine/threonine protein kinase that is closely related to a yeast kinase involved in DNA metabolism. The HeLa cell phosphorylation cycle that controls the initiation of SV40 DNA replication may also play a role in cellular DNA metabolism.  相似文献   

15.
RPA is an initiation factor for human chromosomal DNA replication   总被引:4,自引:0,他引:4       下载免费PDF全文
The initiation of chromosomal DNA replication in human cell nuclei is not well understood because of its complexity. To allow investigation of this process on a molecular level, we have recently established a cell-free system that initiates chromosomal DNA replication in an origin-specific manner under cell cycle control in isolated human cell nuclei. We have now used fractionation and reconstitution experiments to functionally identify cellular factors present in a human cell extract that trigger initiation of chromosomal DNA replication in this system. Initial fractionation of a cytosolic extract indicates the presence of at least two independent and non-redundant initiation factors. We have purified one of these factors to homogeneity and identified it as the single-stranded DNA binding protein RPA. The prokaryotic single-stranded DNA binding protein SSB cannot substitute for RPA in the initiation of human chromosomal DNA replication. Antibodies specific for human RPA inhibit the initiation step of human chromosomal DNA replication in vitro. RPA is recruited to DNA replication foci and becomes phosphorylated concomitant with the initiation step in vitro. These data establish a direct functional role for RPA as an essential factor for the initiation of human chromosomal DNA replication.  相似文献   

16.
We have examined the roles of type-1 (PP-1) and type-2A (PP-2A) protein-serine/threonine phosphatases in the mechanism of activation of p34cdc2/cyclin B protein kinase in Xenopus egg extracts. p34cdc2/cyclin B is prematurely activated in the extracts by inhibition of PP-2A by okadaic acid but not by specific inhibition of PP-1 by inhibitor-2. Activation of the kinase can be blocked by addition of the purified catalytic subunit of PP-2A at a twofold excess over the activity in the extract. The catalytic subunit of PP-1 can also block kinase activation, but very high levels of activity are required. Activation of p34cdc2/cyclin B protein kinase requires dephosphorylation of p34cdc2 on Tyr15. This reaction is catalysed by cdc25-C phosphatase that is itself activated by phosphorylation. We show that, in interphase extracts, inhibition of PP-2A by okadaic acid completely blocks cdc25-C dephosphorylation, whereas inhibition of PP-1 by specific inhibitors has no effect. This indicates that a type-2A protein phosphatase negatively regulates p34cdc2/cyclin B protein kinase activation primarily by maintaining cdc25-C phosphatase in a dephosphorylated, low activity state. In extracts containing active p34cdc2/cyclin B protein kinase, dephosphorylation of cdc25-C is inhibited, whereas the activity of PP-2A (and PP-1) towards other substrates is unaffected. We propose that this specific inhibition of cdc25-C dephosphorylation is part of a positive feedback loop that also involves direct phosphorylation and activation of cdc25-C by p34cdc2/cyclin B. Dephosphorylation of cdc25-C is also inhibited when cyclin A-dependent protein kinase is active, and this may explain the potentiation of p34cdc2/cyclin B protein kinase activation by cyclin A. In extracts supplemented with nuclei, the block on p34cdc2/cyclin B activation by unreplicated DNA is abolished when PP-2A is inhibited or when stably phosphorylated cdc25-C is added, but not when PP-1 is specifically inhibited. This suggests that unreplicated DNA inhibits p34cdc2/cyclin B activation by maintaining cdc25-C in a low activity, dephosphorylated state, probably by keeping the activity of a type-2A protein phosphatase towards cdc25-C at a high level.  相似文献   

17.
Cyclin B targets p34cdc2 for tyrosine phosphorylation.   总被引:28,自引:7,他引:21       下载免费PDF全文
L Meijer  L Azzi    J Y Wang 《The EMBO journal》1991,10(6):1545-1554
A universal intracellular factor, the 'M phase-promoting factor' (MPF), triggers the G2/M transition of the cell cycle in all organisms. In late G2, it is present as an inactive complex of tyrosine-phosphorylated p34cdc2 and unphosphorylated cyclin Bcdc13. In M phase, its activation as an active MPF displaying histone H1 kinase (H1K) originates from the concomitant tyrosine dephosphorylation of the p34cdc2 subunit and the phosphorylation of the cylin Bcdc13 subunit. We have investigated the role of cyclin in the formation of this complex and the tyrosine phosphorylation of p34cdc2, using highly synchronous mitotic sea urchin eggs as a model. As cells leave the S phase and enter the G2 phase, a massive tyrosine phosphorylation of p34cdc2 occurs. This large p34cdc2 tyrosine phosphorylation burst does not arise from a massive increase in p34cdc2 concentration. It even appears to affect only a fraction (non-immunoprecipitable by anti-PSTAIR antibodies) of the total p34cdc2 present in the cell. Several observations point to an extremely close association between accumulation of unphosphorylated cyclin and p34cdc2 tyrosine phosphorylation: (i) both events coincide perfectly during the G2 phase; (ii) both tyrosine-phosphorylated p34cdc2 and cyclin are not immunoprecipitated by anti-PSTAIR antibodies; (iii) accumulation of unphosphorylated cyclin by aphidicolin treatment of the cells, triggers a dramatic accumulation of tyrosine-phosphorylated p34cdc2; and (iv) inhibition of cyclin synthesis by emetine inhibits p34cdc2 tyrosine phosphorylation without affecting the p34cdc2 concentration. These results show that, as it is synthesized, cyclin B binds and recruits p34cdc2 for tyrosine phosphorylation; this inactive complex then requires the completion of DNA replication before it can be turned into fully active MPF. These results fully confirm recent data obtained in vitro with exogenous cyclin added to cycloheximide-treated Xenopus egg extracts.  相似文献   

18.
Exposure of mammalian cells to DNA damage-inducing agents (DDIA) inhibits ongoing DNA replication. The molecular mechanism of this inhibition remains to be elucidated. We employed a simian virus 40 (SV40) based in vitro DNA replication assay to study biochemical aspects of this inhibition. We report here that the reduced DNA replication activity in extracts of DDIA-treated cells is partly caused by a reduction in the amount of replication protein A (RPA). We also report that the dominant inhibitory effect is caused by the DNA-dependent protein kinase (DNA-PK) which inactivates SV40 T antigen (TAg) by phosphorylation. The results demonstrate that RPA and DNA-PK are involved in the regulation of viral DNA replication after DNA damage and suggest that analogous processes regulate cellular DNA replication with the DNA-PK targeting the functional homologues of TAg.  相似文献   

19.
We have made use of the cell-free SV40 DNA replication system to identify and characterize cellular proteins required for efficient DNA synthesis. One such protein, replication protein C (RP-C), was shown to be involved with SV40 large T antigen in the early stages of viral DNA replication in vitro. We demonstrate here that RP-C is identical to the catalytic subunit of cellular protein phosphatase 2A (PP2Ac). The purified protein dephosphorylates specific phosphoamino acid residues in T antigen, consistent with the hypothesis that SV40 DNA replication is regulated by modulating the phosphorylation state of the viral initiator protein. We also show that purified RP-C/PP2Ac preferentially stimulates SV40 DNA replication in extracts from early G1 phase cells. This finding suggests that the activity of a cellular factor that influences the net phosphorylation state of T antigen is cell cycle dependent.  相似文献   

20.
In Saccharomyces cerevisiae, the cellular single-stranded DNA-binding protein replication protein A (RPA) becomes phosphorylated during meiosis in two discrete reactions. The primary reaction is first observed shortly after cells enter the meiotic program and leads to phosphorylation of nearly all the detectable RPA. The secondary reaction, which requires the ATM/ATR homologue Mec1, is induced upon initiation of recombination and only modifies a fraction of the total RPA. We now report that correct timing of both RPA phosphorylation reactions requires Ime2, a meiosis-specific protein kinase that is critical for proper initiation of meiotic progression. Expression of Ime2 in vegetative cells leads to an unscheduled RPA phosphorylation reaction that does not require other tested meiosis-specific kinases and is distinct from the RPA phosphorylation reaction that normally occurs during mitotic growth. In addition, immunoprecipitated Ime2 catalyzes phosphorylation of purified RPA. Our data strongly suggest that Ime2 is an RPA kinase in vivo. We propose that Ime2 directly catalyzes RPA phosphorylation in the primary reaction and indirectly promotes the Mec1-dependent secondary reaction by advancing cells through meiotic progression. Our studies have identified a novel meiosis-specific reaction that targets a key protein required for DNA replication, repair, and recombination. This pathway could be important in differentiating mitotic and meiotic DNA metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号