首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD28 is an antigen of 44 kDa which is expressed on the membrane of the majority of human T cells. The present study examines the functional effects of an anti-CD28 monoclonal antibody (mAb 9.3) on T cell activation induced with immobilized anti-CD3 mAb OKT3 or with mitogens, in the absence of accessory cells. To this end, we used blood resting T cells that were completely depleted of accessory cells (monocytes, B cells, and natural killer cells), and consequently did not respond to recombinant interleukin-2 (rIL-2), to immobilized OKT3, to PHA, or to Con A. Addition of mAb 9.3 to the cultures enhanced IL-2 receptor expression (Tac antigen) on PHA- or immobilized OKT3-stimulated T cells and induced IL-2 receptors on Con A-stimulated T cells. Moreover, addition of mAb 9.3 to cultures of T cells stimulated with PHA, Con A, or immobilized OKT3 resulted in IL-2 production. Soluble mAb 9.3 was a sufficient helper signal for T cell proliferation in response to PHA or immobilized OKT3. Crosslinking of mAb 9.3 by culture on anti-mouse IgG-coated plates enhanced the helper effect and was an essential requirement for the induction of T cell proliferation in response to Con A. No other anti-T cell mAb (anti-CD2, -CD4, -CD5, -CD7, -CD8) was found to provide a complete accessory signal for PHA or Con A stimulation of purified T cells. T cell proliferation induced by the combination of PHA and mAb 9.3 was strongly inhibited by the anti-IL-2 receptor mAb anti-Tac. In conclusion, mAb 9.3 can provide a signal bypassing monocyte requirement in T cell activation with immobilized OKT3, PHA, and Con A, resulting in an autocrine IL-2-dependent pathway of proliferation.  相似文献   

2.
The CD44 molecule, also known as Hermes lymphocyte homing receptor, human Pgp-1, and extracellular matrix receptor III, has been shown to play a role in T cell adhesion and activation. Specifically, anti-CD44 mAb block binding of lymphocytes to high endothelial venules, inhibit T cell-E rosetting, and augment T cell proliferation induced by the CD2 or CD3-TCR pathways. We have characterized an anti-CD44 mAb (212.3) which immunoprecipitates a 90-kDa protein and is specific for CD44 as shown by peptide mapping and antibody competition studies. Interestingly, our studies with 212.3 demonstrate that this CD44-specific mAb completely inhibits T cell proliferation stimulated by the anti-CD3 mAb, OKT3. Inhibition is not a result of reduced cell viability, but is associated with 1) inhibition of IL-2 production, 2) inhibition of IL-2R expression, and 3) inhibition of OKT3-mediated increases in intracellular Ca2+ levels. In addition, 212.3 does not inhibit proliferation by the T cell mitogens PHA or PWM nor does it inhibit proliferation in a mixed lymphocyte reaction. Similar to other anti-CD44 mAb, 212.3 also augments T cell proliferation induced by mAb directed against the T11(2) and T11(3) epitopes of CD2. Thus, these studies describe a novel CD44-specific mAb (212.3) that inhibits T cell activation by OKT3 by blocking early signal transduction. Furthermore, these studies suggest that "receptor cross-talk" between the CD3-TCR complex and CD44 may regulate T cell activation.  相似文献   

3.
The effect of rTNF-alpha on human T cell function was examined and compared with that of rIL-1 beta by assessing the ability of each cytokine to support mitogen-induced proliferation, IL-2 production, and IL-2R expression. TNF-alpha and IL-1 beta each enhanced DNA synthesis induced by PHA or immobilized mAb to the CD3 molecular complex. In addition, each cytokine increased the number of cells entering the G1 phase of the cell cycle and augmented IL-2R expression. The combination of optimal concentrations of these factors supported these responses to a greater extent than either cytokine alone, suggesting that T cell responsiveness is independently regulated by the action of at least two separate monocyte derived cytokines. Whereas TNF-alpha had little effect, IL-1 beta augmented IL-2 mRNA expression and IL-2 production by mitogen-stimulated cells. Furthermore, IL-1 beta enhanced proliferation with increasing length of culture. Whereas TNF-alpha also enhanced proliferation late in culture, it was less effective in this regard than IL-1 beta. Thus, IL-1 beta and TNF-alpha augment mitogen-induced T cell proliferation by increasing the number of cells initially activated and by promoting subsequent cell cycle progression. They differ, however, in their capacity to promote IL-2 mRNA and IL-2 production and therefore ongoing T cell proliferation.  相似文献   

4.
The ability to grow normal T lymphocytes in long term culture has advanced our understanding of T cell biology. The growth of CD4+ cell lines allowed a further evaluation and appreciation of functional subtypes within this group. Cytotoxic CD8+ T cells have been characterized as well. The routine and continuous culture of Ag-nonspecific CD8+ Ts cells has been difficult to achieve. We have found that CD8+ T cells that suppress T cell proliferation and lack cytotoxic activity against T cells can be routinely obtained from PWM or PHA-stimulated PBMC. Continuous culture of T cell blasts from PWM or PHA-stimulated PBMC resulted in the growth of CD4+ and CD8+ T cells. These lines developed suppressor cell activity within 7 days after stimulation with PWM and 3 to 4 wk after stimulation with PHA. Concomitant with the development of suppressor activity was the loss of CD4+ T cells resulting in homogeneous lines of CD8+ suppressor cells. These cell lines have been maintained in continuous culture for greater than 6 mo by addition of rIL-2 twice weekly and restimulation with feeder cells and PHA every 2 wk. Activity of these cell lines was relatively resistant to irradiation or treatment with mitomycin C. Both cell lines suppressed proliferation of autologous or heterologous CD4+ T cells stimulated with PWM, OKT3, or tetanus toxoid but failed to suppress proliferation of CD4+ T cells in a mixed lymphocyte reaction. CD4+ T cells stimulated with PWM produced equivalent amounts of IL-2 in the presence or absence of Ts cells but failed to express the IL-2R (TAC) on their surface in the presence of Ts cells. By contrast, CD4+ T cell lines or cytotoxic CD8+ T cell lines failed to suppress proliferation of CD4+ T cells. With these results we describe methods for the generation and continuous culture of Ag-nonspecific CD8+ Ts cells and define some of their properties. These cells lines should be helpful in further elucidating the functional and phenotypic repertoire of CD8+ Ts cells.  相似文献   

5.
In the present report, we further explored the mechanisms by which 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (paf-acether), a phospholipid mediator of inflammation inhibited PHA-induced CD4+ cell proliferation. Evidence was obtained that CD4+ cells stimulated with either PHA or immobilized OKT3 in the presence of paf at concentrations that block CD4+ cell proliferation, exhibited a marked decrease in high affinity IL-2R expression. Importantly, paf did not prevent the binding of IL-2 to its receptor. Scatchard analysis of the binding data indicated that paf caused more than 50% decrease in the number of IL-2 high affinity sites per cell, whereas the receptor ligand affinity remained essentially constant. Moreover, the down-regulation of high affinity IL-2R was also accompanied by a loss of IL-2-dependent proliferative capacity. Together these data suggest that decreased expression of high affinity IL-2R may contribute to the diminished proliferative activity observed in CD4+ cells stimulated with PHA or immobilized OKT3 in the presence of paf. They further emphasize the potential role of lipid proinflammatory mediators such as paf in the regulation of T cell activation.  相似文献   

6.
We recently reported that the myristoylated peptide N-myristoyl-Lys-Arg-Thr-Leu-Arg (N-m-KRTLR) is a novel protein kinase C inhibitor. In this study, we investigated the biological effects of N-m-KRTLR using as an in vitro model the induction of the IL-2 receptor and IL-2 secretion by Jurkat cells in response to stimulation with 12-O tetradecanoylphorbol-13-acetate (TPA) plus phytohemagglutinin (PHA) and TPA plus OKT3 mAb. N-m-KRTLR significantly suppressed induction of the IL-2 receptor on the surface of the Jurkat cells by TPA plus either PHA or OKT3 mAb. Furthermore, N-m-KRTLR inhibited the production and release of IL-2 from cultured Jurkat cells stimulated with TPA plus either PHA or OKT3 mAb. Similarly, this peptide significantly inhibited the IL-2 production in normal human peripheral blood mononuclear cells in response to stimulation by TPA and PHA. In contrast, this peptide did not affect expression of the CD3 complex on the surface of the Jurkat cells either alone or in the presence of TPA or PHA. Furthermore, N-m-KRTLR did not interfere with the spontaneous proliferation of the Jurkat cells, and its effects on IL-2 secretion and IL-2 receptor expression in the Jurkat cells were evident without loss of cell viability. These results suggest that the novel protein kinase C inhibitor N-m-KRTLR may selectively inhibit certain activation pathways of Jurkat cells and indicate the usefulness of N-m-KRTLR in the analysis of discrete events in T cell activation.  相似文献   

7.
8.
Common variable immunodeficiency (CVI) is a syndrome characterized by hypogammaglobulinemia, recurrent bacterial infections, and increased occurrence of both autoimmune disease and malignancy. In our study we examine the expression of lymphokine genes in mitogen-activated T cells from four patients with CVI. T cells from patients with CVI did not differ significantly from normals in total T cell number, CD4/CD8 ratio, CD45R expression, or proliferation in response to PHA. However, T cells from this group of patients did exhibit significant abnormalities of mitogen-induced lymphokine gene expression. T cells from patients exhibited significantly decreased expression of IL-2, IL-4, IL-5, and IFN-gamma when compared to normal controls. In contrast to these abnormal findings, mitogen-activated T cells from patients with CVI expressed normal amounts of IL-2R alpha and c-myc suggesting that these patients have a selective abnormality of T cell activation. Furthermore, it is likely that the deficient production of IFN-gamma by patient T cells is partially due to the abnormality of IL-2 production as the levels of IFN-gamma mRNA detected during the initial IL-2-independent phase of T cell activation were normal and the addition of exogenous rIL-2 was able to normalize IFN-gamma production by PHA-stimulated patient cells. Finally, supernatants from PHA-activated cultures of patients PBMC were deficient in their ability to support Ig secretion by Staphylococcus A Cowan's-activated normal B cells suggesting that these T cell abnormalities may contribute to the pathogenesis of this syndrome.  相似文献   

9.
We report a new, monocyte-independent system for the induction of activation and proliferation of human T cells in response to murine hybridomas expressing the OKT3 monoclonal antibody (OKT3 hybridomas). Incubation of nylon-wool-nonadherent (NA) lymphocytes or purified T cells with OKT3 hybridomas resulted in interleukin-2 (IL-2) production, expression of IL-2 receptor, modulation of the CD3 antigen, and proliferation. In contrast, murine hybridomas (OKT4, OKT8, anti-HLA-DR, and others) expressing monoclonal antibodies (mAb) other than OKT3 did not induce T-cell activation and proliferation. T cells did not respond to OKT3 mAb alone. OKT3 hybridomas alone did not produce interleukin-1 (IL-1) or other soluble factors that might be involved in the induction of IL-2 production by T cells, and they did not contain membrane-bound IL-1. In addition, IL-1 activity was not detected in cultures of NA-lymphocytes and OKT3 hybridomas, clearly demonstrating that IL-1 was not required, at least in this system, for T-cell activation and proliferation. Direct cell-cell contact between T cells and OKT3 hybridomas was required for IL-2 production. Thirty to fifty percent of T cells formed conjugates with the OKT3 hybridomas but not with the OKT4 or OKT8 hybridomas. Both conjugate formation and IL-2 production were significantly inhibited by the OKT3 mAb and by the anti-LFA-1 mAb. The cells responsible for IL-2 production were found to be of the T3+ T4+ T8- Leu 7- Leu 11- phenotype. IL-2 activity produced by NA-lymphocytes in response to OKT3 hybridomas became detectable as early as 1 hr and reached a maximum by 8 hr, preceding IL-2 receptor expression, modulation of the CD3 antigen, and [3H]thymidine incorporation of T cells. T cells produced higher concentrations of IL-2 in response to OKT3 hybridomas than in response to equal numbers of monocytes and OKT3 mAb. Addition of monocytes to cultures of T cells and OKT3 hybridomas resulted in suppression of IL-2 production in a concentration-dependent manner, suggesting that monocytes regulate the levels of IL-2 production. This monocyte-independent system may be useful for further dissection of T-cell activation and proliferation and its regulation by monocytes.  相似文献   

10.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

11.
Regulation of human T lymphocyte mitogenesis by antibodies to CD3   总被引:3,自引:0,他引:3  
The inhibitory and mitogenic effects of anti-CD3 antibodies (anti-CD3) were examined in cultures of human peripheral blood T cells. Resting T cells required the presence of accessory cells (AC) or phorbol myristate acetate (PMA) to be stimulated by soluble anti-CD3 (OKT3 and 64.1). Anti-CD3 was unable to induce activation of AC-depleted T cells as determined by IL 2 receptor expression, IL 2 production, cell cycle analysis, or detectable DNA synthesis. Although T cell responses to PHA also required AC, far fewer were necessary to generate responses. Anti-CD3 inhibited PHA-stimulated T cell IL 2 production, IL 2 receptor expression and proliferation in partially AC-depleted cultures. Moreover, anti-CD3 was able to inhibit PHA responses when added to culture as late as 24 to 42 hr after the initiation of a 96-hr incubation. Increasing concentrations of PHA reduced the inhibitory effect of anti-CD3 on PHA-stimulated T cell proliferation, whereas IL 2 production remained suppressed. Anti-CD3 linked to Sepharose beads effectively inhibited PHA-stimulated T cell DNA synthesis, indicating that internalization of the CD3 molecule was not required for inhibition of PHA responses. Although inhibition of IL 2 production was a major effect of anti-CD3 in PHA-stimulated cultures, it was not the only apparent inhibitory effect because the addition of exogenous IL 2 could not prevent inhibition completely. Intact AC but not IL 1 also reduced anti-CD3-mediated inhibition of PHA responsiveness, whereas the addition of both IL 2 and AC largely prevented inhibition. Thus, anti-CD3 in the absence of adequate AC signals exerted a number of distinct inhibitory effects on mitogen-induced T cell activation. These results suggest that the CD3 molecular complex may play a role in regulating T cell responsiveness after engagement of the T cell receptor by a number of mechanisms, some of which involve inhibition of IL 2 production.  相似文献   

12.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

13.
Interleukins (IL-) 1 and 6 have been shown to represent accessory signals for T-cell activation. In the present study, we further examined the effects of both cytokines on accessory cell-depleted human T cells stimulated with phytohemagglutinin (PHA). The addition of IL-6 to the cultures resulted in T-cell proliferation; however, IL-1 was unable to support PHA-induced T-cell growth. The addition of IL-1 consistently induced a low level of IL-2 production and strongly enhanced T-cell proliferation in the presence of IL-6. Thus, the effect of IL-1 on T-cell growth becomes apparent only in the presence of IL-6. Blocking the IL-2-receptor (IL-2R) with the monoclonal antibodies anti-Tac and MikBêta 1 (directed to the alpha and bêta chains of the IL-2R, respectively) had no effect on PHA/IL-6-supported proliferation, but completely eliminated the growth-enhancing effect of IL-1. On the other hand, a neutralizing anti-IL-4-antiserum did not affect PHA/IL-6- or PHA/IL-6/IL-1-induced proliferation. Further experiments showed that IL-6 enhances T-cell responsiveness to IL-2, as evidenced by enhanced IL-2-induced proliferation. However, we could not find an effect of IL-6 on the expression of IL-2R as measured by staining with anti-Tac and with MikBêta 1 or by binding of (125I)-IL-2 to T cells. It can be concluded from these studies that IL-1 and IL-6 have different helper effects on PHA-induced T-cell activation. In the presence of PHA, IL-6 induces limited IL-2/IL-4-independent growth, and more importantly it renders T cells responsive to IL-2. IL-1 provides a signal leading to IL-2 production. The combination of IL-1 and IL-6 represents a synergistic helper signal, leading to an IL-2-dependent pathway of proliferation.  相似文献   

14.
Soluble mitogens, such as PHA induce accessory cell (AC)-dependent T cell proliferation. One function of the AC is to create a stimulatory matrix. Therefore, experiments were carried out to determine whether PHA immobilized onto microtiter plates could stimulate T cells in the absence of AC. Peripheral blood T4 cells were cultured under limiting dilution conditions with either soluble or immobilized PHA with or without rIL-1 beta, rIL-2, r-TNF-alpha, an anti-CD28 mAb (9.3), or irradiated EBV-transformed B cells as AC. The frequency of proliferating T4 cells was assessed by examining wells microscopically, and the frequency of T4 cells producing IL-2 was assessed by examining the ability of supernatants to support CTLL-2 proliferation. The percentage of T4 cells growing and producing IL-2 was determined by a maximum likelihood procedure. Immobilized, but not soluble, PHA induced a mean of 20.0 +/- 2.6% of T4 cells to grow in the complete absence of AC in medium supplemented with rIL-2. Whereas rIL-1 beta, rTNF-alpha, and 9.3 were unable to support T4 cell growth in the absence of rIL-2, each enhanced the percentage of T4 cells responding to immobilized PHA in the presence of rIL-2. In contrast, both soluble and immobilized PHA were unable to induce T4 cell IL-2 production in the absence of AC, even when cultures were supplemented with rIL-1 beta or 9.3. In the presence of AC, a small percentage of T4 cells (5.4 to 11.7%) was stimulated to produce detectable amounts of IL-2 by either immobilized or soluble PHA. Moreover, in the presence of AC, a very small population (approximately 1%) of PHA-stimulated T4 cells proliferated without supplemental rIL-2. The data indicate that a matrix of immobilized PHA is sufficient for some T4 cells to be activated to respond to IL-2, whereas others require additional signals provided by rIL-1 beta, rTNF alpha, 9.3, or AC. In contrast, neither soluble nor immobilized PHA is sufficient to induce T cell IL-2 production. This response requires signals provided by intact AC.  相似文献   

15.
16.
A mouse mAb, TS 43, which recognized the human CD5 molecule, was found to induce the proliferation of human peripheral blood T cells. TS 43 mAb precipitated from 125I-radiolabeled T cells a 67-kDa band, which comigrated with the 67-kDa band precipitated by the anti-CD5 mAb OKT1. Preclearing of cell lysates with OKT1 mAb abolished the capacity of TS 43 mAb to precipitate radiolabeled material from T cell lysates. Furthermore, a mouse T cell hybridoma transfected with human CD5 was stained by TS 43 mAb. T cell proliferation mediated by TS 43 mAb was monocyte dependent, and was accompanied by IL-2R expression and by IL-2 synthesis. T cell activation by TS 43 mAb involved a rise in intracellular calcium level (CA2+)i and was dependent on the expression of the TCR/CD3 complex because no rise in (Ca2+)i was observed in a TCR-beta-deficient Jurkat T cell mutant. This study indicates that CD5 should be added to the list of surface molecules that can signal T cells to proliferate.  相似文献   

17.
The capacity of PGE2 to inhibit human T cell responses was examined by investigating its effect on mitogen-induced IL-2 production and proliferation of highly purified CD4+ T cells. PGE2 inhibited both PHA and anti-CD3 induced proliferation and IL-2 production by an action directly on the responding T cell. Inhibition of IL-2 production reflected decreased accumulation of mRNA for IL-2. A variety of other cAMP elevating agents exerted similar inhibitory effects. Inhibition of proliferation could be overcome by supplemental IL-2, PMA, or the anti-CD28 mAb 9.3. Although PMA and 9.3 markedly increased the amount of IL-2 produced by mitogen-stimulated T cells, the percentage inhibition of IL-2 secretion caused by PGE2 and other cAMP elevating agents remained comparable in these costimulated cultures. Rescue of T cell DNA synthesis by these agents appeared to reflect the finding that, although PGE2 markedly inhibited IL-2 production, the absolute amount of IL-2 produced was increased sufficiently to sustain mitogen-induced proliferation. As anticipated, PGE2, forskolin, and cholera toxin increased T cell cAMP levels. The quantity of cellular cAMP generated in response to PGE2, cholera toxin, and forskolin could be inhibited by PMA or 2',5'-dideoxyadenosine. Using these reagents, the inhibitory effects of PGE2 were found to reflect intracellular cAMP levels, but only within a very narrow range. The results indicate that by elevating cAMP levels, PGE2 inhibits human T cell IL-2 production at a point that is common to both the CD3 and CD28 signaling pathways.  相似文献   

18.
We investigated the effect of polymorphonuclear neutrophils (PMN) on anti-CD3 mAb (OKT3 and anti-Leu4)-mediated T cell activation. In the absence of monocytes, purified E-rosette-positive cells (further referred to as "T cells") require either solid-phase bound anti-CD3 or the combination of both a high concentration of soluble anti-CD3 and exogenous recombinant interleukin 2 (rIL-2) to proliferate. PMN cannot sustain T cell proliferation with soluble anti-CD3, but they markedly boost proliferation in the presence of soluble anti-CD3 and rIL-2. When PMN were added to T cell cultures stimulated with anti-CD3, this resulted in IL-2 receptor (IL-2R) expression and CD3 modulation. The mechanism of enhancement of anti-CD3-induced IL-2-responsiveness by PMN was further analyzed. A cellular T cell-PMN interaction was found to play a critical role and this was mediated through PMN Fc receptors (FcR). PMN bear two types of low-affinity FcR (FcRII and FcRIII). FcRII is known to bind mIgG1 (e.g., anti-Leu4) and FcRIII binds mIgG2a (e.g., OKT3). FcR involvement was demonstrated by two observations. Anti-FcRII mAb IV.3 inhibited the PMN signal for T cell activation with anti-Leu4. PMN bearing the second variant of FcRII which is unable to bind mIgG1 failed to promote anti-Leu4/IL-2-mediated T cell proliferation. Thus, PMN potentiate T cell responsiveness to IL-2 in the presence of anti-CD3 mAb and this potentiation by PMN requires interaction of anti-CD3 with PMN-FcR.  相似文献   

19.
Activation of human T4 cells by cross-linking class I MHC molecules   总被引:2,自引:0,他引:2  
These studies examined whether cross-linking class I MHC molecules results in functional or biochemical responses in human T4 cells. The initial studies demonstrated that cross-linking class I MHC molecules either by culturing highly purified T4 cells with immobilized mAb to class I MHC Ag or reacting the T4 cells with mAb to class I MHC Ag and then cross-linking the mAb with goat antimouse Ig (GaMIg) enhanced T4 cell proliferation induced by an immobilized mAb to CD3, OKT3. More-over, immobilized but not soluble mAb to class I MHC Ag enhanced T4 cell proliferation induced by the combination of two mAb to CD2, OKT11, and D66.2. Finally, T4 cells reacted with mAb to CD3 and class I MHC Ag proliferated in the presence of IL-2 when cross-linked with GaMIg more vigorously than T4 cells reacted with either mAb alone. Cross-linking class I MHC molecules was also found to stimulate T4 cells directly. T4 cells reacted with mAb to class I MHC Ag or beta 2 microglobulin and cross-linked with GaMIg proliferated vigorously in the presence of IL-2 or PMA. In addition, it was demonstrated that cross-linking class I MHC molecules by culturing T4 cells with immobilized mAb to class I MHC Ag induced T4 cell proliferation in the presence of IL-2. T4 cell proliferation in the presence of IL-2 and PMA could also be induced by reacting the cells with specific mAb to polymorphic determinants on class I MHC molecules and cross-linking with GaMIg. Cross-linking mAb to CD4 or CD11a did not have a similar functional effect on T4 cells. Finally it was demonstrated that adding GaMIg to T4 cells reacted with mAb to class I MHC Ag but not CD11a resulted in an increase in intracellular calcium concentration. The data demonstrate that cross-linking class I MHC molecules results in the generation of at least one activation signal, a rise in intracellular calcium concentration, and, thereby, stimulates human T4 cells.  相似文献   

20.
Activation of human peripheral blood T cells by the anti-CD3 antibody OKT3 has been shown to require not only cross-linking of CD3 molecules with multimeric binding of the Fc part of OKT3 to a solid support, but also a second accessory cell-provided signal. Accordingly, measurement of T cell activation in cultures of highly enriched T cells with solid-phase-bound OKT3 can be used to investigate whether other agents can replace accessory cells. In this study we examined the capacity of anti-CD5 monoclonal antibodies to provide the additional activation signal. Resting T cells were prepared by isolating E rosette-positive cells, by removing OKM1(+) and HLA-DR(+) cells by panning, and by subsequent treatment of the cells with L-leucine methyl ester to kill remaining monocytes. These T cells were unresponsive to phytohemagglutinin (PHA) or to solid-phase-bound OKT3. However, when cultured in the presence of an anti-CD5 monoclonal antibody (anti-Leu-1, OKT1, or anti-T1), a proliferative response to solid-phase-bound OKT3 (but not to soluble OKT3 or to PHA) was observed. Anti-CD5 had no functional effect by itself, but in association with solid-phase-bound OKT3 it enhanced IL 2 receptor expression and IL 2 production and it initiated T cell proliferation. T cell proliferation under these conditions could be inhibited by an IL 2 receptor blocking antibody anti-Tac, thus confirming that anti-CD5 provides the second signal for an IL 2-dependent pathway of T cell proliferation. Preincubation of T cells with anti-Leu-1 or OKT1 resulted in complete loss of CD5 antigenicity, and such CD5 modulation was sufficient to induce a proliferative response to solid-phase-bound OKT3. It is concluded that in T cell activation by solid-phase-bound OKT3 the necessary additional signal can be provided by modulation of the CD5 antigen with an anti-CD5 antibody. CD5 therefore appears to be a positive signal receptor on the T cell membrane, whose physiologic ligand still has to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号