首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
BALB/c mice possess a 5' duplication of the alpha-cardiac actin gene which is associated with abnormal levels of alpha-cardiac and alpha-skeletal actin mRNAs in adult cardiac tissue. This mutation therefore provides a potential tool for the study of the inter-relationship between the striated muscle actins. We have examined the expression of this actin gene pair throughout the development of skeletal and cardiac muscle in BALB/c mice. During embryonic and fetal development, the expression of these two genes is indistinguishable from that in normal mice, as determined by in situ hybridization. A quantitative postnatal study demonstrates that in the hearts of normal mice the level of alpha-cardiac actin mRNA declines, whereas that of alpha-skeletal actin increases. In mutant mice, these trends are exaggerated so that whereas normal mice have 95.8% alpha-cardiac mRNA and 4.2% alpha-skeletal mRNA in the adult heart, BALB/c mice have 52.4 and 47.6% of these mRNAs, respectively. This difference is also reflected at the protein level. In developing skeletal muscle, the expression of these genes follows kinetics similar to that observed in the heart with a decrease in the relative level of alpha-cardiac mRNA as the muscle matures. Cardiac actin mRNA levels are again lower in the mutant mouse, but here the effect is less striking because skeletal actin is the predominant isoform. These results are discussed in the context of the interaction between this actin gene pair in developing and adult striated muscle.  相似文献   

4.
5.
6.
7.
A library of cDNA clones was constructed from adult rat skeletal muscle mRNA, from which a set of contractile protein clones was selected. These clones were identified by sequencing the cDNA inserts and comparing the derived amino acid sequences with published sequences of rabbit contractile proteins. In this manner, clones corresponding to myosin light chains 1, 2, and 3, troponin-C, troponin-T, alpha-tropomyosin, and alpha-actin were identified. A high degree of amino acid sequence conservation was found upon comparison of the rat and rabbit proteins. Using the cDNA clone panel, we analyzed the expression of abundant rat muscle mRNAs. We show that abundant rat muscle mRNAs can be classified into four developmentally regulated groups, based upon their expression at different stages of myogenesis. One class of mRNAs is expressed during all stages of muscle development. Since these mRNAs are also present in nonmuscle tissues, we conclude that they code for housekeeping proteins. The second class of mRNAs is present in both embryonic and adult muscle, while a third class of mRNAs is expressed only in adult muscle. A small number of mRNAs, which are present at greater levels in undifferentiated myoblasts than in adult muscle, comprise a fourth class. These results suggest the existence of at least four modes of gene control during myogenesis.  相似文献   

8.
9.
10.
11.
SARCOSIN, also named Krp1, has been identified as a protein exclusively expressed in striated muscle tissue. Here we report on the role of SARCOSIN in skeletal muscle development and differentiation. We demonstrate, by means of whole-mount in situ hybridization, that Sarcosin mRNA is expressed in the myotome part of the mature somites in mouse embryos from embryonic day 9.5 onwards. Sarcosin is not expressed in the developing heart at these embryonic stages, and in adult tissues the mRNA expression levels are five times lower in the heart than in skeletal muscle. SARCOSIN protein partially co-localizes with the M-band protein myomesin and between and below laterally fusing myofibrils in adult skeletal muscle tissue. RNA interference mediated knock-down of SARCOSIN in the C2C12 myoblast cell line appeared to be stimulatory in the early phase of differentiation, but inhibitory at a later phase of differentiation.  相似文献   

12.
13.
Fast and slow/cardiac troponin C (TnC) are the two different isoforms of TnC. Expression of these isoforms is developmentally regulated in vertebrate skeletal muscle. Therefore, in our studies, the pattern of their expression was analyzed by determining the steady-state levels of both TnC mRNAs. It was also examined if mRNAs for both isoforms of TnC were efficiently translated during chicken skeletal muscle development. We have used different methods to determine the steady-state levels of TnC mRNAs. First, probes specific for the fast and slow TnC mRNAs were developed using a 390 base pair (bp) and a 255 bp long fragment, of the full-length chicken fast and slow TnC cDNA clones, respectively. Our analyses using RNA-blot technique showed that fast TnC mRNA was the predominant isoform in embryonic chicken skeletal muscle. Following hatching, a significant amount of slow TnC mRNA began to accumulate in the skeletal (pectoralis) muscle. At 43 weeks posthatching, the slow TnC mRNA was nearly as abundant as the fast isoform. Furthermore, a majority of both slow and fast TnC mRNAs was found to be translationally active. A second method allowed a more reliable measure of the relative abundance of slow and fast TnC mRNAs in chicken skeletal muscle. We used a common highly conserved 18-nucleotide-long sequence towards the 5'-end of these mRNAs to perform primer extension analysis of both mRNAs in a single reaction. The result of these analyses confirmed the predominance of fast TnC mRNA in the embryonic skeletal muscle, while significant accumulation of slow TnC mRNA was observed in chicken breast (pectoralis) muscle following hatching. In addition to primer extension analysis, polymerase chain reaction was used to amplify the fast and slow TnC mRNAs from cardiac and skeletal muscle. Analysis of the amplified products demonstrated the presence of significant amounts of slow TnC mRNA in the adult skeletal muscle.  相似文献   

14.
We have isolated tropomyosin cDNAs from human skeletal muscle and nonmuscle cDNA libraries and constructed gene-specific DNA probes for each of the four functional tropomyosin genes. These DNA probes were used to define the regulation of the corresponding mRNAs during the process of myogenesis. Tropomyosin regulation was compared with that of beta- and gamma-actin. No two striated muscle-specific tropomyosin mRNAs are coordinately accumulated during myogenesis nor in adult striated muscles. Similarly, no two nonmuscle tropomyosins are coordinately repressed during myogenesis. However, mRNAs encoding the 248 amino acid nonmuscle tropomyosins and beta- and gamma-actin are more persistent in adult skeletal muscle than those encoding the 284 amino acid nonmuscle tropomyosins. In particular, the nonmuscle tropomyosin Tm4 is expressed at similar levels in adult rat nonmuscle and striated muscle tissues. We conclude that each tropomyosin mRNA has its own unique determinants of accumulation and that the 248 amino acid nonmuscle tropomyosins may have a role in the architecture of the adult myofiber. The variable regulation of nonmuscle isoforms during myogenesis suggests that the different isoforms compete for inclusion into cellular structures and that compensating autoregulation of mRNA levels bring gene expression into alignment with the competitiveness of each individual gene product. Such an isoform competition-autoregulatory compensation mechanism would readily explain the unique regulation of each gene.  相似文献   

15.
We have isolated a cDNA that encodes the human regulatory myosin light chain isoform predominant in adult atrial muscle. The cDNA contains an open reading frame of 175 amino acids and encodes a hydrophilic protein of a largely helical structure with two potential phosphorylation sites. The protein is different from any other regulatory myosin light chain so far described and is the product of a previously uncharacterized single copy gene. An isoform-specific probe was used to analyze the expression of this isoform in adult muscle and in cardiac and skeletal muscle development in vivo and in vitro. Parallel analysis of the corresponding human alkali myosin light chain (predominant in adult atrium) showed that both isoforms are expressed in early heart development, in both atrium and ventricle. Although the atrial alkali light chain is expressed throughout embryonic striated muscle development, the regulatory myosin light chain was not detected in skeletal myogenesis in vivo or in vitro. Thus the atrial isoforms are not universally or exclusively "paired" and can be independently regulated. We propose that the manner in which these particular isoforms fulfill the functional requirements of the muscle at different developmental times may have direct impact on their regulation.  相似文献   

16.
17.
A procedure was developed to determine the percentage of skeletal muscle actin and cardiac actin present in different striated muscle tissues. The method was applied to 2 mg of actin mixtures isolated from various origins. All samples show simultaneous expression of both striated muscle isoactins, with the cardiac actin being the major form (congruent to 80%) in 11-day-old chick embryonic leg muscle, decreasing to approximately 50% values in the late fetal stage of chicken, mouse, and in fused mouse muscle cell cultures and becoming the minor species (less than 5%) in adult skeletal muscle tissues. We also find a significant amount (up to 20%) of the skeletal muscle isoform in adult heart (ventricle) of porcine, bovine, and human origin and no differences in muscle actin ratios in human atrium and ventriculum cells. Similarly, no significant variation in the actin ratios was observed between a normal heart and a heart from a patient with hereditary obstructive myopathy. For those cells and tissues where comparison with levels of mRNA was possible we mostly find a good correlation between the relative ratios of expression of cardiac and skeletal actin proteins and mRNAs.  相似文献   

18.
19.
20.
Thyroid hormone regulates the expression of ventricular myosin isoenzymes by causing an accumulation of alpha-myosin heavy chain (MHC) mRNA and inhibiting expression of beta-MHC mRNA. However, the mechanism of thyroid hormone action has been difficult to examine in vivo because of its diverse actions. Accordingly, hormonal control of expression of six MHC isoform mRNAs and cardiac and skeletal alpha-actin mRNAs was studied in primary cultures of fetal rat heart myocytes grown in defined medium. The results indicate that in the absence of thyroid hormone, cultured heart cells express predominantly beta-MHC and cardiac alpha-actin mRNAs. Addition of 3,5,3'-triiodo-L-thyronine (T3) caused a rapid induction of alpha-MHC mRNA and decreased beta-MHC mRNA levels without affecting the skeletal muscle MHC mRNAs. There was an almost parallel change in the myosin isoenzymes. Cardiac alpha-actin mRNA levels were transiently increased by T3 treatment, but skeletal alpha-actin was unaffected. Elimination of insulin and epithelial growth factor from the medium did not alter the effects of T3 on cardiac MHC mRNA expression. Addition of various adrenergic agents to the medium had no appreciable effect on cardiac MHC mRNA expression despite the presence of functionally coupled alpha- and beta-adrenergic receptors. Addition of steroid hormones, muscarinic agents, and glucagon to the medium also had no effect. Thus, under defined conditions, T3 is able to regulate MHC gene expression at a pretranslational level without the need for other exogenous factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号