首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S Segal  M Garner  M F Singer  M Rosenberg 《Cell》1976,9(2):247-257
The origin of a repetitive monkey DNA sequence that is incorporated into a defective simian virus 40 genome has been studied. A fragment (about 140 base pairs in length) containing essentially all the repetitive monkey DNA present in the defective and few, if any, SV40 sequences can be cleaved from the purified defective DNA by restriction endonucleases Hind(II and III). Radioactive cRNA prepared with the isolated fragment as template was hybridized in situ to African green monkey chromosomes. The results indicate that all or part of the sequence in question occurs at both centromeric and noncentromeric positions in many, but not all, chromosomes. Of the typical 60 chromosomes, between nine and eleven hybridize with the cRNA in noncentromeric regions.  相似文献   

3.
In an effort to characterize sites of recombination between SV40 and monkey DNA, we have determined the primary sequence of a large portion of the SV40 variant, designated 1103. This virus contains DNA sequences derived both from the wild type SV40 genome and from the permissive monkey cell in which the virus was propagated. Further, the monkey sequences included in the defective genome are homologous to both highly repeated monkey DNA (alpha component) and sequences that are infrequently repeated in the monkey genome. The regions of the 1103 genome where DNA sequences were determined include 1) the segments of the variant that surround joints connecting SV40 and monkey sequences, 2) the segment that contains the joint between monkey sequences of high and low reiteration frequency, and 3) the DNA segment of the variant that is homologous to monkey alpha component DNA. Comparison of the data obtained from the sequences analysis of the SV40 variants 1103 and CVP8/1/P2 (EcoRI res) (described in Wakamiya, T., McCutchan, T., Rosenberg, M., and Singer, M. (1979) J. Biol. Chem 254, 3584-3591) reveals certain similarities between the two that may be involved in eukaryotic recombination and defective variant formation.  相似文献   

4.
We examined further the physical structure of the simian virus 40 (SV40) and bacteriophage lambda DNA sequences in an SV40-lambda hybrid that had been propagated in monkey kidney cells. The SV40 vector portion of the hybrid, which was a small fragment isolated from a reiteration mutant of SV40, contained the site for initiation of SV40 DNA replication. Electron microscope heteroduplex and restriction endonuclease analyses revealed a tandem duplication of the SV40 vector segment linked to a 2,300-base pair portion (lambda map units 71 to 76) of the lambda immunity region. The defective hybrid genome thus harbors two origins for SV40 DNA replication in addition to the leftward operator and the N gene of lambda.  相似文献   

5.
E Jay  R Wu 《Biochemistry》1976,15(16):3612-3620
The nucleotide sequence at the cleavage site of the restriction endonuclease isolated from Arthrobacter luteus (Alu) has been determined. The endonuclease cleaves at the center of a palindromic tetranucleotide sequence to give even-ended duplex DNA fragments phosphorylated at the 5'-end. The endonuclease cleaves SV40 form I DNA into 32 fragments. The order and sizes of these fragments have been determined to provide an Alu cleavage map of the SV40 genome.  相似文献   

6.
D Ganem  A L Nussbaum  D Davoli  G C Fareed 《Cell》1976,7(3):349-359
A 520 base pair DNA segment was excised from the bacteriophage lamda-genome by cleavage with the bacterial restriction endonuclease, endo R. Hindll. This segment was covalently joined in vitro to an 880 base pair simian virus 40 (SV40) DNA segment which contains the initation site for SV40 DNA replication. The latter segment was derived from the genome of a defective reiteration mutant of SV40 also by endo R. Hindlll cleavage. When the recombinant molecule, together with wild-type SV40 DNA as helper, was introduced into monkey cells by DNA infection, replication of the lamda-DNA sequences was observed, and hybrid genomes were encapsidated into progeny SV40 virions. The structure of the lamda-DNA segment after serial passage in monkey cells was examined by use of restriction endonucleases and electron microscopic heteroduplex analysis.  相似文献   

7.
B C Lin  M C Chien    S Y Lou 《Nucleic acids research》1980,8(24):6189-6198
A type II restriction endonuclease Xmn I with a novel site specificity has been isolated from Xanthomonas manihotis. Xmn I does not cleave SV40 DNA, but cleaves phi X174 DNA into three fragments, which constitute 76.61%, 18.08% and 5.31% of the total length of 5386 base pairs, and cleaves pBR322 DNA into two fragments of 55.71% and 44.29% of the entire 4362 base pairs. The nucleotide sequences around the cleavage sites made by Xmn I are not exactly homologous, but they have a common sequence of 5' GAANNNNTTC 3' according to a simple computer program analysis on nucleotide sequences of phi X174 DNA, pBR322 DNA and SV40 DNA. The results suggest that the cleavage site of Xmn I is located within its recognition sequence of 5' GAANNNNTTC 3'.  相似文献   

8.
The complete nucleotide sequence has been determined for three newly cloned evolutionary variants from two different independently generated evolutionary series (1100 and 2100 series) of simian virus 40 (SV40). These naturally arising variants, designated ev-1110, ev-2102, and ev-2114, were isolated after five high multiplicity serial passages. The structure of the variants consists of a monomeric unit tandemly repeated four times (ev-2102 and ev-2114) or six times (ev-1110) in the variant genome; the variants have four or six copies, respectively, of the viral origin signal for DNA replication. The DNA content in the three variants is vastly different in that the genome of variant ev-2114 contains only rearranged viral sequences, while variant ev-2102 contains a substitution with monkey DNA sequences consisting of a nearly complete dimeric unit of Alu family sequences as well as less repetitive sequences and variant ev-1110 contains monkey DNA sequences derived solely from repetitive alpha-component DNA. Recombination events, cellular sequences, and structural features of these and other naturally arising SV40 variants are compared.  相似文献   

9.
A recombinant library of human DNA sequences was screened with a segment of simian virus 40 (SV40) DNA that spans the viral origin of replication. One hundred and fifty phage were isolated that hybridized to this probe. Restriction enzyme and hybridization analyses indicated that these sequences were partially homologous to one another. Direct DNA sequencing of two such SV40-hybridizing segments indicated that this was not a highly conserved family of sequences, but rather a set of DNA fragments that contained repetitive regions of high guanine plus cytosine content. These sequences were not members of the previously described Alu family of repeats and hybridized to SV40 DNA more strongly than do Alu family members. Computer analyses showed that the human DNA segments contained multiple homologies with sequences throughout the SV40 origin region, although sequences on the late side of the viral origin contained the strongest cross-hybridizing sequences. Because of the number and complexity of the matches detected, we could not determine unambiguously which of the many possible heteroduplexes between these DNAs was thermodynamically most favored. No hybridization of these human DNA sequences to any other segment of the SV40 genome was detected. In contrast, the human DNA segments isolated cross-hybridized with many sequences within the human genome. We tested for the presence of several functional domains on two of these human DNA fragments. One SV40-hybridizing fragment, SVCR29, contained a sequence which enhanced the efficiency of thymidine kinase transformation in human cells by approximately 20-fold. This effect was seen in an orientation-independent manner when the sequence was present at the 3' end of the chicken thymidine kinase gene. We propose that this segment of DNA contains a sequence analogous to the 72-base-pair repeats of SV40. The existence of such an "activator" element in cellular DNA raises the possibility that families of these sequences may exist in the mammalian genome.  相似文献   

10.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

11.
12.
13.
The genome of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 rescued by passage on transformed permissive monkey lines (see accompanying paper [Y. Gluzman et al., J. Virol. 24:534-540, 1977]) was analyzed by restriction endonuclease cleavage mapping to obtain biochemical evidence that the rescue of the ts phenotype results from recombination with the resident SV40 genome of the transformed cell. It was demonstrated that the endonuclease R. HaeIII cleavage site, which is located at 0.9 map unit in the standard viral genome (and which is in the proximity of the known map position of the tsD lesion), is missing in the DNAs of the parental tsD202 virus and of three independent revertants of tsD202. In contrast, this cleavage site was shown to be present in the DNAs of four out of five independently derived rescued D202 populations and in the DNA of the SV40 strain, 777, used to transform the monkey cells. Comparison of the endonuclease R. Hin(II + III) cleavage patterns of SV40 strain 777 DNA and tsD202 DNA revealed differences in the electrophoretic mobilities of Hin fragments A, B, and F. However, the corresponding Hin fragments from all four rescued D202 genomes were identical in their mobilities to those of tsD202 DNA, indicating that these regions of the rescued D202 genome are characteristic of the tsD202 parent. We conclude, therefore, that the genome of the rescued D202 virus is a true recombinant, since it contains restriction endonuclease cleavage sites characteristic of both parents, the endogenous resident SV40 genome of the transformed monkey cells and the exogenous tsD202 mutant.  相似文献   

14.
15.
HindIII-O/N DNA fragments of vaccinia virus (VV) of the LIVP strain were mapped using thirteen restriction endonucleases. Nucleotide sequences of the HindIII-O fragment (1530 bp) as well as of a site of the HindIII-N genome fragment 353 bp in size were determined. Comparison of restriction maps and nucleotide sequences of VV strains (WR and LIVP) demonstrated that DNA of VV LIVP contained % deletions and 2 insertions. "Reliable" short direct repeats were localized and their possible role in formation of DNA deletions was shown. It was suggested that VV endonuclease and DNA-ligase participate in replication and repair processes. Mechanism of formation of variable sequences of viral genomes is discussed.  相似文献   

16.
A preparation of serially passaged simian virus 40 (SV40) DNA, in which at least 66% of the molecules contain covalently linked cellular DNA sequences, was digested to completion with the Hemophilus influenzae restriction endonuclease. Polyacrylamide gel electrophoresis of the digest showed that the majority of the cleavage products migrated as nine classes of fragments, each class defined by a particular molecular weight. These classes of fragments differ in molecular weight from the fragments produced by the action of the same enzyme on plaque-purified virus DNA. Three classes of fragments were present in less than equimolar amounts relative to the original DNA. The remaining six classes of fragments each contain more than one fragment per original DNA molecule. DNA-DNA hybridization analysis (using the filter method) of the isolated cleavage products demonstrated the presence of highly reiterated cell DNA sequences in two of the nine classes of fragments. A third class of fragments hybridized with high efficiency only to serially passaged SV40 DNA; the level of hybridization to plaque-purified virus DNA was low and there was essentially no hybridization with cell DNA immobilized on filters. It is suggested that this class of fragments contains unique host sequences. It was estimated that at least 27% of the sequences in the substituted SV40 DNA molecules studied are host sequences. The majority of these are probably of the nonreiterated type.  相似文献   

17.
A repeating element of DNA has been isolated and sequenced from the genome of Bordetella pertussis. Restriction map analysis of this element shows single internal ClaI, SphI, BstEII and SalI sites. Over 40 DNA fragments are seen in ClaI digests of B. pertussis genomic DNA to which the repetitive DNA sequence hybridizes. Sequence analysis of the repeat reveals that it has properties consistent with bacterial insertion sequence (IS) elements. These properties include its length of 1053 bp, multiple copy number and presence of 28 bp of near-perfect inverted repeats at its termini. Unlike most IS elements, the presence of this element in the B. pertussis genome is not associated with a short duplication in the target DNA sequence. This repeating element is not found in the genomes of B. parapertussis or B. bronchiseptica. Analysis of a DNA fragment adjacent to one copy of the repetitive DNA sequence has identified a different repeating element which is found in nine copies in B. parapertussis and four copies in B. pertussis, suggesting that there may be other repeating DNA elements in the different Bordetella species. Computer analysis of the B. pertussis repetitive DNA element has revealed no significant nucleotide homology between it and any other bacterial transposable elements, suggesting that this repetitive sequence is specific for B. pertussis.  相似文献   

18.
Comparative study of papovavirus DNA: BKV(MM), BKV(WT) and SV40.   总被引:8,自引:2,他引:6       下载免费PDF全文
Extensive physical mapping revealed that approximately 90% of the genomes of BKV(prototype, WT) and BKV (MM strain) are identical or closely related. Nucleotide sequences of the non-homologous regions and a large portion of the homologous regions have been determined for both genomes. The coding sequence of small t antigen of BKV(MM) is 216 nucleotides shorter than that of BKV(WT), even though no differences in biological function of the t antigen was observed. Both genomes contain three similar sets of 44-61 base-pair repeated sequences. However, the DNA sequence of the tandem repeats is totally different between BKV (human cell as host) and SV40 (monkey cell as host). On the other hand, the region between the N-terminus of the T antigen genes and the origin of replication is dominated by a similar set of palindromic sequences in BKV and SV40 DNA. There is also extensive homology between the regions which code for proteins in BKV and SV40, suggesting a close evolutionary relationship.  相似文献   

19.
When simian virus 40 (SV40) is serially passaged at high multiplicity, a heterogeneous collection of naturally arising variants is generated. Those which are the most abundant presumably have a selective replicative advantage over other defective and wild-type helper SV40s. Two such naturally arising host-substituted variants of SV40 have been characterized in terms of complete nucleotide sequence determination. Evolutionary variant ev-1101 (previously isolated by Lee et al., Virology 66:53-69, 1975) is from undiluted serial passage 13, whereas ev-2101 is newly isolated from undiluted serial passage 6 of an independently-derived evolutionary series. Both variants contain a five-times tandemly repeated segment of DNA consisting of viral Hin C and Hin A sequences that have recombined with a segment of host DNA that is not highly reiterated in the monkey genome. The monkey segment differs in the two variants as does the size of the viral segment retained. In two additional host-substituted variants, ev-1102 (previously isolated from serial passage 20 by Brockman et al., Virology 54:384-397, 1973) and ev-1108 (newly isolated from serial passage 40), the SV40 sequences derived from the replication origin are present as inverted repetitions. The inverted repeat regions of these two variants have been analyzed at the nucleotide sequence level and are compared with SV40 variant ev-1104 from passage 45 (previously characterized by Gutai and Nathans, J. Mol. Biol. 126:259-274, 1978). The viral segment containing the regulatory signals for replication and viral gene expression is considerably shortened in later serial passages as demonstrated by these five variants. It is of interest that the variants presumably arose due to their enhanced replication efficiency, yet are missing some of the sequence elements implicated in the regulation of replication. Furthermore, a comparison of the structure of the replication origin regions indicates that additional changes occur in the SV40 regulatory region with continued undiluted serial passage.  相似文献   

20.
The structure of a newly and independently isolated defective variant of simian virus 40 that contains covalently linked monkey and SV40 DNA sequences is described. This variant, termed 290, has a structure essentially identical with a previously isolated and characterized variant named CVP8/1/P2 (Eco RI res). The structural similarities include the monkey (host) DNA segment that is combined with viral DNA sequences, the particular viral DNA segment that is present, and the arrangement of these within the defective genome. The monkey DNA segment contains sequences derived from both low and high reiteration frequency monkey DNA. The viral sequences include the origin of replication. The separate isolation of essentially identical variants suggests a high level of specificity in the events leading to the formation and amplification of this type of defective genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号