首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The cyr2 mutant of yeast, Saccharomyces cerevisiae, required cAMP for growth at 35 degrees C. The cyr2 mutation was suppressed by the bcy1 mutation which resulted in deficiency of the regulatory subunit of cAMP-dependent protein kinase. The DEAE-Sephacel elution profile of cyr2 cAMP-dependent protein kinase was markedly different from that observed for the wild-type enzyme. With histone as substrate, the cAMP-dependent protein kinase activity of cyr2 cells showed 100-fold greater Ka value for activation by cAMP at 35 degrees C than that of the wild-type cells, while the Kd value for cAMP of the mutant enzyme was not altered. The electrophoretic character, molecular weight, and pI value of the regulatory subunit of the mutant enzyme were the same as those of the wild-type enzyme. When histone, trehalase, and glutamate dehydrogenase were used as substrate, the free catalytic subunit of the mutant enzyme showed a markedly decreased affinity for ATP and was more thermolabile compared to that of the wild-type enzyme. The results indicated that the cyr2 phenotype was produced by a structural mutation in the cyr2 gene coding for the catalytic subunit of cAMP-dependent protein kinase in yeast.  相似文献   

2.
We investigated the relationship in Saccharomyces cerevisiae between the cell cycle start function, CDC25, and two mutants defining components of the cAMP pathway. The thermolabile adenylate cyclase mutant cyr1-2(ts) is phenotypically similar to the temperature-sensitive mutant cdc25(ts) in that both mutants, when shifted to the restrictive temperature, arrest in G1 of the cell cycle and permit the initiation of meiosis and sporulation. The mutant bcy1 [a lesion resulting in a low level of regulatory (R) subunit and a high level of active, catalytic (C) subunit of the cAMP-dependent protein kinase] suppresses the temperature-sensitive phenotype of cyr1-2(ts) and confers an asporogenous phenotype. We found that cdc25(ts) complemented cyr1-2(ts), and, unlike cyr1-2(ts), was not suppressible by bcy1, demonstrating that CYR1 and CDC25 must encode different functions. Also our results indicate that CDC25 does not encode the R subunit of the cAMP-dependent protein kinase. In addition, although the cdc25(ts)bcy1 double mutant was temperature sensitive like cdc25(ts), we found that the cdc25(ts)bcy1 homozygous diploid was asporogenous like bcy1/bcy1. The inability of the cdc25(ts)bcy1 double mutant to sporulate demonstrated that CDC25 does not encode the C subunit of the cAMP kinase, and indicated that the CDC25 function modulates the cAMP pathway to control meiosis and sporulation. Further, the temperature-sensitive phenotype of the double mutant, and hence the inability of bcy1 to suppress cdc25(ts), suggested that a second CDC25 cell cycle function exists which is independent of the cAMP pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Examination of the proportion of unbudded cells, terminal nuclear phenotype and DNA content of nuclei indicated that cyr1 mutants of yeast defective in adenylate cyclase activity were arrested at the G1 phase of the cell cycle. The step of G1 arrest due to the cyr1 mutation preceded the step sensitive to the mating pheromone. The temperature-sensitive cyr1 cells did not continue growth, nor retain the capacity to conjugate at a restrictive temperature. The phenotypes of the cyr1 mutant mimicked those of nutritionally limited cells. The G1 arrest caused by the cyr1 mutation was overcome by the presence of a suppressor mutation, bcy1, that resulted in deficiency of a regulatory subunit of cAMP-dependent protein kinase and production of high level of cAMP-independent protein kinase. The bcy1 mutation suppressed G1 arrest caused by nutritional limitation, and continued bud emergence for multiple cycles without further nuclear division. The data suggest that cAMP works as a positive effector at the start of a yeast cell cycle via activation of cAMP-dependent protein kinase.  相似文献   

4.
Yeast cells with a nonsense adenylate cyclase mutation, cyr1-3, required cyclic AMP for growth. This phenotype was suppressed by the byc1 mutation; however, cyr1-3 bcy1 cells produced no detectable level of adenylate cyclase or cyclic AMP. On induction, the bcy1 and cyr1-3 bcy1 mutant cells produced the same levels of galactokinase and alpha-D-glucosidase as did the wild-type cells and fourfold-higher levels of invertase. Since galactokinase synthesis was severely repressed by glucose in the constitutive GAL81 mutants, irrespective of the cyr1-3 bcy1 genotype, cyclic AMP may not be involved in catabolite repression.  相似文献   

5.
A spontaneous mutant of the yeast Candida maltosa SBUG 700 was isolated showing pseudohyphal marphology under all growth conditions tested. The C. maltosa PHM mutant takes up glucose with the kinetics of C. maltosa SBUG 700 and starved cells contain the same cyclic AMP concentration. Addition of glucose to the PHM mutant does not result in an increase of the intracellular cyclic AMP level and in catabolite inactivation of fructose-1,6-bisphosphatase, malate dehydrogenase and phosphoenolpyruvate carboxykinase. However, addition of 2,4-dinitrophenol is followed by a rapid, transient increase of the cyclic AMP level in the mutant cells, but not by catabolite inactivation. These results show that a common mechanism might be responsible for catabolite inactivation and glucose-induced cAMP signaling or that glucose-induced cAMP signaling is required for catabolite inactivation in C. maltosa.  相似文献   

6.
K Matsumoto  I Uno  T Ishikawa 《Cell》1983,32(2):417-423
Control of the initiation of meiosis was examined in diploids of yeast homozygous for two temperature-sensitive mutations, cyr1 and CYR3, which are defective in adenylate cyclase and cAMP-dependent protein kinase, respectively. The cyr1 and CYR3 mutations permitted the initiation of meiosis, but resulted in the frequent production of two-spored asci at the restrictive temperature. Unlike the wild-type diploid cells, the cyr1 and CYR3 homozygous diploid cells were capable of initiating meiosis even in nutrient growth media. This unique feature of the cyr1 and CYR3 mutants suggests that these mutations relate to the choice between mitotic and meiotic processes. In diploids homozygous for the bcy1 mutation that results in deficiency of the regulatory subunit of cAMP-dependent protein kinase and production of a high level of the catalytic subunit of this enzyme, no premeiotic DNA replication and commitment to intragenic recombination occurred, and no spores were formed. We conclude that the initiation of meiosis may be dependent upon the repression of cAMP production and the inactivation of cAMP-dependent protein kinase.  相似文献   

7.
Phosphoenolpyruvate carboxykinase showed high activity in Saccharomyces cerevisiae grown on gluconeogenic carbon sources. Addition of glucose to such cultures caused a rapid loss of the phosphoenolpyruvate carboxykinase activity. Fructose or mannose had the same effect as glucose, while 2-deoxyglucose or galactose were without effect. The inactivation was an irreversible process, since the regain of the activity was dependent of de novo protein synthesis. Cycloheximide did not prevent inactivation. All strains of the genus Saccharomyces tested showed inactivation of their phosphoenolpyruvate carboxykinase upon addition of glucose; this behaviour was not restricted to this genus.Non-Standard Abbreviations FbPase fructose bisphosphatase [EC 3.1.3.11 fructose-1,6-bisphosphate hydrolase] - PEPCK phosphoenolpyruvate carboxykinase [EC 4.1.49 ATP: oxalacetate carboxylase (transphosphorylating)] - YPE yeast-peptone-ethanol A preliminary account of these results was presented at the Fourth International Symposium on Yeasts, Vienna, Austria, July 1974  相似文献   

8.
In Saccharomyces cerevisiae, cAMP-dependent phosphorylation plays an essential role at the start of the cell cycle. It has also recently been demonstrated that the breakdown of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate and diacylglycerol is a requisite process for cell proliferation (Uno, I., Fukami, K., Kato, H., Takenawa, T., and Ishikawa, T. (1988) Nature 333, 188-190). To clarify the relationship between the cAMP- and inositol phospholipid-mediated signal transduction systems, alterations in the inositol phospholipid metabolism of cAMP mutants were examined. The incorporation of [32P]Pi into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) was markedly reduced in ras2, which produces low levels of cAMP, and increased in bcy1, which produces cAMP-independent protein kinase. The incorporation of [32P]Pi into ATP and phosphatidylinositol (PI) was almost the same in wild type, ras1, ras2, and bcy1 yeast strains. The addition of exogenous cAMP to cyr1-2 caused a tremendous increase in [32P]Pi incorporation into PIP and PIP2 without any effect on incorporation into ATP and PI, suggesting that cAMP plays an important role in polyphosphoinositide synthesis. We therefore examined the activities of PI and PIP kinases, the enzymes that catalyze the sequential steps from PI to PIP2 via PIP. The activities of both kinases were found to be very low in the membranes of cry1-2 and ras2 but very high in the membranes of bcy1 and ras1 ras2 bcy1 strain cells. The addition of cAMP to cyr1-2 cells caused the activation of PI and PIP kinases. Furthermore, the treatment of membranes with cAMP or dibutyryl cAMP caused the activation of PI kinase in wild type, ras1, cry1-2, and ras2 strains, but not in bcy1 strain cells. The effect was most prominent in membranes from cyr1-2 and ras2 cells. These results show that cAMP-dependent phosphorylation enhances polyphosphoinositide synthesis through activation of PI and PIP kinase, an effect which may lead to the enhanced production of inositol 1,4,5-trisphosphate and diacylglycerol.  相似文献   

9.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

10.
The glycoprotein gp115 (Mr = 115,000, pI 4.8-5) is localized in the plasma membrane of Saccharomyces cerevisiae cells and maximally expressed during G1 phase. To gain insight on the mechanism regulating its synthesis, we have examined various conditions of cell proliferation arrest. We used pulse-labeling experiments with [35S]methionine and two-dimensional gel electrophoresis analysis, which allow the detection of the well characterized 100-kDa precursor of gp115 (p100). In the cAMP-requiring mutant cyr1, p100 synthesis is active during exponential growth, shut off by cAMP removal, and induced when growth is restored by cAMP readdition. The inhibition of p100 synthesis also occurs in TS1 mutant cells (ras1ras2-ts1) shifted from 24 to 37 degrees C. During nitrogen starvation of rca1 cells, a mutant permeable to cAMP, p100 synthesis is also inhibited. cAMP complements the effect of ammonium deprivation, promoting p100 synthesis, even when added to cells which have already entered G0. Experiments with the bcy1 and cyr1bcy1 mutants have indicated the involvement of the cAMP-dependent protein kinases in the control of p100 synthesis. Moreover, the synthesis of p100 was unaffected in A364A cells, terminally arrested at START B by alpha-factor. These results indicate that the switch operating on p100 synthesis is localized in early G1 (START A) and is one of the multiple events controlled by the cAMP pathway.  相似文献   

11.
The inactivation of the peroxisomal enzyme alcohol oxidase and the cytoplasmic enzymes fructose-1,6-bisphosphatase, malate dehydrogenase and phosphoenolpyruvate carboxykinase was found to occur after addition of glucose to methanol-grown cells of the yeastHansenula polymorpha. The concentration of cyclic AMP increased nearly twofold within 3 min under the same conditions. In crude extracts ofH. polymorpha about 20 proteins are phosphorylated by cyclic AMP dependent protein kinases, among them also fructose-1,6-bisphosphatase. No phosphorylation of the alcohol oxidase protein could be detected. From this fact, it was concluded that the inactivation of the peroxisomal alcohol oxidase is independent of cyclic AMP-dependent protein phosphorylation.  相似文献   

12.
One of the cyr 1 mutants (cyr 1-2) in yeast produced low levels of adenylate cyclase and cyclic AMP at 25 degrees and was unable to derepress acid phosphatase. Addition of cyclic AMP to the cyr1-2 cultures elevated the level of repressible acid phosphatase activity. The bcy1 mutation, which suppresses the cyr1-2 mutation by allowing activity of a cyclic AMP-independent protein kinase, also allows acid phosphatase synthesis without restoring adenylate cyclase activity. The CYR3 mutant had structurally altered cyclic AMP-dependent protein kinase and was unable to derepress acid phosphatase. The cyr1 locus was different from pho2, pho4 and pho81, which were known to regulate acid phosphatase synthesis. Mutants carrying cyr1-2 and pho80, PHO81c, PHO82 or pho85 mutations, which confer constitutive synthesis of repressible acid phosphatase, produced acid phosphatase. The cyr1-2 mutant produced significantly low levels of invertase and alpha-D-glucosidase. These results indicated that cyclic AMP-dependent protein kinase exerts its function in the synthesis of repressible acid phosphatase and other enzymes.  相似文献   

13.
The CYR3 mutant of yeast, Saccharomyces cerevisiae, partially accumulated unbudded cells and required cAMP for the best growth at 35 degrees C. The CYR3 mutation was partially dominant over the wild type counterpart and suppressed by the bcy1 mutation which is responsible for the deficiency of the regulatory subunit of cAMP-dependent protein kinase. The molecular weights of cAMP-dependent protein kinase and its catalytic and regulatory subunits were 160,000, 30,000, and 50,000, respectively. No significant differences in the molecular weights of cAMP-dependent protein kinase and the subunits were found between the wild type and CYR3 mutant strains. However, the cAMP-dependent protein kinase activity of CYR3 cells showed significantly higher Ka values for activation by cAMP at 35 degrees C than those of wild type and a clear difference in the electrophoretic mobility of the regulatory subunit was found between the wild type and CYR3 enzymes. The CYR3 mutation was suppressed by the IAC mutation which caused the production of a significantly high level of cAMP. The results indicate that the CYR3 phenotype was produced by a structural mutation in the CYR3 gene coding for the regulatory subunit of cAMP-dependent protein kinase in yeast.  相似文献   

14.
In the preceding paper, we have identified a protein of Mr = 118,000 which is induced by stress conditions that lead to cessation of DNA synthesis and cell division (Verma, R., Iida, H., and Pardee, A.B. (1988) J. Biol. Chem. 263, 8569-8575). In the current study, we have investigated the possible role this protein may play in cellular proliferation by studying p118 expression in mutants of the cAMP metabolic pathway. The cyr 1-2 mutant gene encodes a thermolabile adenylate cyclase whose activity is only 7% of wild type even at permissive temperatures (23 degrees C). We have found that at 23 degrees C, the G1 period was 5-fold longer in cyr 1-2 than in CYR1+ cells and that p118 was constitutively expressed in these slow cycling mutants. Addition of 8-bromo-cAMP to cyr 1-2 mutants restored growth at both the restrictive and permissive temperatures and resulted in a shut-off in the synthesis of p118. The effect of the analog on p118 expression was rapid, preceding the increase in cell number and percentage-budded cells. In contrast to wild type cells, p118 synthesis was not induced by sulfur starvation in RAS2val19 mutants possessing high levels of adenylate cyclase activity and bcy1 mutants defective in the regulatory subunit of cAMP-dependent protein kinase. A large body of evidence exists supporting a role of cAMP in positive control of cell proliferation. It is therefore possible that conditions which decrease cAMP arrest growth through a chain of events that include p118 induction.  相似文献   

15.
We have isolated two unlinked yeast genes complementing the cell division cycle mutant cdc25-1, one containing the wild type allele CDC25 and the other acting as an extragenic suppressor of the cdc25-1 lesion if present on a multicopy plasmid. Nucleotide sequence analysis of the suppressor gene has revealed an open reading frame that encodes a 45,000-dalton protein belonging to the protein kinase family. The cdc25-suppressing protein kinase (PK-25) shows 48% sequence similarity to the catalytic subunit (CA) of mammalian cAMP-dependent protein kinase and 27-31% similarity to cyclic nucleotide-independent enzymes, including the yeast CDC28 gene product. The PK-25 gene was targeted by integrative transformation into a chromosomal region unlinked to the CYR2 site, the structural gene of CA. The cdc25-suppressing protein kinase is also functionally different from CA, since cyr2 strains deficient in the free catalytic subunit remain temperature sensitive if transformed with a multicopy plasmid containing the PK-25 gene. Furthermore, a deficiency of the cAMP-binding regulatory subunit (RA) caused by the bcy1 mutation fails to suppress the cdc25 mutation, indicating that PK-25 does not interact with the cAMP receptor protein. Our data suggest that the cdc25 suppressor gene encodes a cAMP-independent protein kinase involved in the control of the cell cycle start.  相似文献   

16.
In the yeast Saccharomyces cerevisiae, the addition of glucose to derepressed cells and intracellular acidification trigger a rapid increase in the cAMP level within 1 min. We have identified a mutation in the genetic background of several related 'wild-type' laboratory yeast strains (e.g. ENY.cat80-7A, CEN.PK2-1C) that largely prevents both cAMP responses, and we have called it lcr1 (for lack of cAMP responses). Subsequent analysis showed that lcr1 was allelic to CYR1/CDC35, encoding adenylate cyclase, and that it contained an A to T substitution at position 5627. This corresponds to a K1876M substitution near the end of the catalytic domain in adenylate cyclase. Introduction of the A5627T mutation into the CYR1 gene of a W303-1A wild-type strain largely eliminated glucose- and acidification-induced cAMP signalling and also the transient cAMP increase that occurs in the lag phase of growth. Hence, lysine1876 of adenylate cyclase is essential for cAMP responses in vivo. Lysine1876 is conserved in Schizosaccharomyces pombe adenylate cyclase. Mn2+-dependent adenylate cyclase activity in isolated plasma membranes of the cyr1met1876 (lcr1) strain was similar to that in the isogenic wild-type strain, but GTP/Mg2+-dependent activity was strongly reduced, consistent with the absence of signalling through adenylate cyclase in vivo. Glucose-induced activation of trehalase was reduced and mobilization of trehalose and glycogen and loss of stress resistance were delayed in the cyr1met1876 (lcr1) mutant. During exponential growth on glucose, there was little effect on these protein kinase A (PKA) targets, indicating that the importance of glucose-induced cAMP signalling is restricted to the transition from gluconeogenic/respiratory to fermentative growth. Inhibition of growth by weak acids was reduced, consistent with prevention of the intracellular acidification effect on cAMP by the cyr1met1876 (lcr1) mutation. The mutation partially suppressed the effect of RAS2val19 and GPA2val132 on several PKA targets. These results demonstrate the usefulness of the cyr1met1876 (lcr1) mutation for epistasis studies on the signalling function of the cAMP pathway.  相似文献   

17.
H. Mitsuzawa 《Genetics》1993,135(2):321-326
The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity cAMP phosphodiesterases, respectively. In addition, P-28-24C was found to carry a mutation conferring slow growth that lies in CYR1, which encodes adenylate cyclase, and the slow growth phenotype caused by the cyr1 mutation was suppressed by the pde2 mutation. Therefore P-28-24C is fortuitously a pde1 pde2 cyr1 triple mutant. Responsiveness to cAMP conferred by pde mutations suggests that S. cerevisiae cells are permeable to cAMP to some extent and that the apparent absence of effect of exogenously added cAMP on wild-type cells is due to immediate degradation by cAMP phosphodiesterases.  相似文献   

18.
Cadmium, in addition to producing a variety of toxic manifestations, is known to accumulate in certain "target" organs which include liver and kidney where histological and functional damage becomes apparent. The daily intraperitoneal injection of cadmium chloride for 21 or 45 days stimulated the activities of hepatic pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1, 6-diphosphatase and glucose-6-phosphatase elevated blood glucose and urea, and lowered hepatic glycogen in rats. Whereas chronic Cd treatment failed to alter adenosine-3', 5'-monophosphate phosphodiesterase (PDE) activity, cyclic AMP (cAMY and the activity of basal and fluoride-stimulated forms of hepatic adenylate cyclase (AC) were markedly increased. However, the cAMP binding to hepatic protein kinase was decreased as was the kinase activity ration. An acute dose of Cd decreased hepatic glycogen content and increased blood glucose, serum urea, and hepatic cAMP. Chronic exposure to Cd induced adrenal hypertrophy and augmented adrenal norepinephrine and epinephrine as well as the activity of adrenal tyrosine hydroxylase. This treatment decreased prostatic and testicular weights of mature rats. Although cAMP as well as AC activity of the prostate gland were reduced, cAMP binding to the prostatic protein kinase was increased as was the activity of the cAMP-dependent form of the enzyme. Testicular AC and PDE activities, however, were stimulated, although cAMP remained unaffected. Whereas the activities of the cAMP-dependent and the independent forms of testicular protein kinase were significantly depressed, the binding of cAMP to protein kinase from testes of Cd-treated rats was not affected. In most cases, the observed metabolic alterations persisted up to 28 days on cessation of Cd administration. Subacute Cd treatment suppressed pancreatic function as evidenced by lowered serum immunoreactive insulin (IRI) in presence of hyperglycemia, as well as by partial inhibition of phentolamine-stimulated increases in serum IRI. Although chronic Cd treatment failed to alter the concentration of brain stem norepinephrine and cerebrocortical acetylcholine esterase activity, serotonin levels of brain stem were depressed and the concentration of striatal dopamine and cerebrocortical acetylcholine were significantly elevated when compared with the values seen in control nonexposed animals.  相似文献   

19.
20.
Summary Mutants of Saccharomyces cerevisiae with reduced glucose phosphorylation were investigated. They were all recessive and belonged to one gene HEX1, mutant designation hex1. Carbon catabolite repression of alpha-glucosidases, invertase and part of the total malate dehydrogenase was reduced. Repression of the glyoxylate cycle enzymes, isocitrate lyase and malate synthetase, as well as that of gluconeogenetic fructose-1, 6-bisphosphatase was normal. A slight effect on repression of succinate: cytochrome c oxidoreductase and respiration was to be detected. The effect on repression by fructose was much less pronounced but still clear. However, there was a paradoxical effect of hexose concentration with higher concentrations repressing less. Maltose was also less repressing in the mutant. Growth on all sugars degraded via the hexose phosphorylation reaction was reduced and more strongly so at higher concentrations. Intracellular concentrations of glucose-6-phosphate, fructose-6-phosphate and fructose-1,6-bisphosphate were largely the same in mutant and wild type. The only striking difference between mutant and wild type was a fourfold higher intracellular glucose concentration in maltose grown mutants cells. The data obtained do not support the contention that carbon catabolite repression of the enzymes studied is triggered by intracellular hexoses or their metabolites alone. They rather suggest that it is some component of the hexose phosphorylating system that contributes to carbon catabolite repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号