首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.  相似文献   

2.
The potential nitrogen sources for the primary production in the intertidal area are nitrogen compounds obtained from mineralization in the sediment and the water column, nitrogen fixation, outflow from rivers and groundwater seeping from the mainland. The available inorganic nitrogen in the adjacent coastal waters decreases from 50–80 μmol NO3 -/l and 6–15 μmol NH4 +/l in early spring to ca one tenth during the growing season. In the sediment of the tidal flats available ammonia and nitrate vary between 50 and 100 μmol/1 pw. In the salt marsh available ammonia increases from 200–300 nmol NH4 +/g fwt to approximately double the amount, and the available nitrate varies from 100–300 nmol NO3 -/g fwt (250–750 μmol NO3 -/l pw) to ca one third during the growing season. The exchange of NH4 +, NO2 - and NO3 - across the sediment water interface has been estimated during tidal cycles under light and dark conditions on the tidal flats. The flux of nitrogen was dependent on the flora and fauna as well as the time of the year. The tidal activity, frequency and length of inundation are considered the driving force in a two-way process between salt marshes and adjacent coastal waters. The role of marsh sediment, tidal water and sediments of the tidal flats as sites of accumulation, consumption and remineralization of organic matter is emphasized. The possible exchange of ammonia and nitrate between the salt marsh and the different compartments of the tidal water is discussed.  相似文献   

3.
In all photosynthetic organisms, chlorophylls function as light‐absorbing photopigments allowing the efficient harvesting of light energy. Chlorophyll biosynthesis recurs in similar ways in anoxygenic phototrophic proteobacteria as well as oxygenic phototrophic cyanobacteria and plants. Here, the biocatalytic conversion of protochlorophyllide to chlorophyllide is catalysed by evolutionary and structurally distinct protochlorophyllide reductases (PORs) in anoxygenic and oxygenic phototrophs. It is commonly assumed that anoxygenic phototrophs only contain oxygen‐sensitive dark‐operative PORs (DPORs), which catalyse protochlorophyllide reduction independent of the presence of light. In contrast, oxygenic phototrophs additionally (or exclusively) possess oxygen‐insensitive but light‐dependent PORs (LPORs). Based on this observation it was suggested that light‐dependent protochlorophyllide reduction first emerged as a consequence of increased atmospheric oxygen levels caused by oxygenic photosynthesis in cyanobacteria. Here, we provide experimental evidence for the presence of an LPOR in the anoxygenic phototrophic α‐proteobacterium Dinoroseobacter shibae DFL12T. In vitro and in vivo functional assays unequivocally prove light‐dependent protochlorophyllide reduction by this enzyme and reveal that LPORs are not restricted to cyanobacteria and plants. Sequence‐based phylogenetic analyses reconcile our findings with current hypotheses about the evolution of LPORs by suggesting that the light‐dependent enzyme of D. shibae DFL12T might have been obtained from cyanobacteria by horizontal gene transfer.  相似文献   

4.
Partitioning of CO2 incorporation into oxygenic phototrophic, anoxygenic phototrophic, and chemolithoautotrophic guilds was determined in a freshwater lake (Lake Cisó, Banyoles, Spain). CO2 incorporation into the different types of microorganisms was studied at different depths, during diel cycles, and throughout the year. During winter holomixis, the whole lake became anoxic and both the anoxygenic and chemolithoautotrophic guilds were more active at the surface of the lake, whereas the activity of the oxygenic guild was negligible. During stratification, the latter guild was more active in the upper metalimnion, whereas the anoxygenic guild was more active in the lower metalimnion. Specific growth rates and doubling times were estimated for the most conspicuous phototrophic microorganisms. Doubling times for Cryptomonas phaseolus ranged between 0.5 and 192 days, whereas purple sulfur bacteria (Chromatiaceae-like) ranged between 1.5 and 238 days. These growth rates were similar to those calculated with a different approach in previous papers and indicate slow-growing populations with very large biomass. Overall, the annual total CO2 incorporation in Lake Cisó was 220 g C m−2. Most of the CO2 incorporation, however, was due to the chemolithoautotrophic guild (61% during holomixis and 56% during stratification), followed by the anoxygenic phototrophic guild (35 and 19%, respectively) and the oxygenic phototrophs (4 and 25%, respectively), making dark carbon fixation the key process in the autotrophic metabolism of the lake.  相似文献   

5.
Illuminated intact pea chloroplasts in the presence of O-acetylserine (OAS) catalysed incorporation of SeO32- and SO32- into selenocysteine and cysteine at rates of ca 0.36 and 6 μmol/mg Chl per hr respectively. Sonicated chloroplasts catalysed SeO32- and SO32- incorporation at ca 3.9 and 32% respectively of the rates of intact chloroplasts. Addition of GSH and NADPH increased the rates to ca 91 and 98% of the intact rates, but SeO32- incorporation under these conditions was essentially light-independent. In the absence of OAS, intact chloroplasts catalysed reduction of SO32- to S2- at rates of ca 5.8 μmol/mg Chl per hr. In the presence of OAS, S2- did not accumulate. Glutathione (GSH) reductase was purified from peas and was inhibited by ZnCl2. This enzyme, in the presence of purified clover cysteine synthase, OAS, GSH and NADPH, catalysed incorporation of SeO32- into selenocysteine (but not SO32- into cysteine). The reaction was inhibited by ZnCl2. Incorporation of SeO32- into selenocysteine by illuminated intact chloroplasts and sonicated chloroplasts (with NADPH and GSH) was also inhibited by ZnCl2 but not by KCN. Conversely, incorporation of SO32- into cysteine was inhibited by KCN but not by ZnCl2. It was concluded that SeO32- and SO32- are reduced in chloroplasts by independent light-requiring mechanisms. It is proposed that SeO32- is reduced by light-coupled GSH reductase and that the Se2- produced is incorporated into selenocysteine by cysteine synthase.  相似文献   

6.
The structure and production characteristics of microbial communities from the Urinskii alkaline hot spring (Buryat Republic, Russia) have been investigated. A distinctive characteristic of this hot spring is the lack of sulfide in the issuing water. The water temperature near the spring vents ranged from 69 to 38.5°C and pH values ranged from 8.8 to 9.2. The total mineralization of water was less than 0.1 g/liter. Temperature has a profound effect on the species composition and biogeochemical processes occurring in the algal-bacterial mats of the Urinskii hot spring. The maximum diversity of the phototrophic community was observed at the temperatures 40 and 46°C. A total of 12 species of cyanobacteria, 4 species of diatoms, and one species of thermophilic anoxygenic phototrophic bacteria, Chloroflexus aurantiacus, have been isolated from mat samples. At temperatures above 40°C, the filamentous cyanobacterium Phormidium laminosum was predominant; its cell number and biomass concentration comprised 95.1 and 63.9%, respectively. At lower temperatures, the biomass concentrations of the cyanobacterium Oscillatoria limosa and diatoms increased (50.2 and 36.4%, respectively). The cyanobacterium Mastigocladus laminosus, which is normally found in neutral or slightly acidic hydrothermal systems, was detected in microbial communities. As the diatom concentration increases, so does the dry matter concentration in mats, while the content of organic matter decreases. The concentrations of proteins and carbohydrates reached their maximum levels at 45–50°C. The maximum average rate of oxygenic photosynthesis [2.1 g C/(m2 day)], chlorophyll a content (343.4 mg/m2), and cell number of phototrophic microorganisms were observed at temperatures from 45 to 50°C. The peak mass of bacterial mats (56.75 g/m2) occurred at a temperature of 65–60°C. The maximum biomass concentration of phototrophs (414.63 × 10?6 g/ml) and the peak rate of anoxygenic photosynthesis [0.42 g C/(m2 day)] were observed at a temperature of 35–40°C.  相似文献   

7.
Laminaria longicrucis De la Pylaie took up exogenous nitrate under both summer and winter conditions. During July and August no NO3- was detected in the ambient water or in algal tissues although it was present in both in February. Discs (2.3 cm diam.) of thin blade tissue were incubated with NO3- at four temperatures, with and without illumination. Similar values Jor NO3- uptake were found for both summer and winter collected plants when measured in light at 0 C. An apparent K of 4–6 μM was recorded for both types of plants; the Vmax ranged from 7 to 10 μmol h-1 g-1 dry wt measured in ca. 1800 μW cm-2 of cool-white fluorescent light. Uptake rates at 5 C were 66%, and at 0 C 30% of those for controls run at 15 C. The alga scavenged NO3- from solutions <0.5 μM. Ammonia did not inhibit NO3- uptake. Antibiotic pretreatment reduced NO3- uptake by a maximum of 12%. Nitrite uptake was inhibited in proportion to the concentration of NO3- in the medium.  相似文献   

8.
Community Composition of a Hypersaline Endoevaporitic Microbial Mat   总被引:3,自引:2,他引:1       下载免费PDF全文
A hypersaline, endoevaporitic microbial community in Eilat, Israel, was studied by microscopy and by PCR amplification of genes for 16S rRNA from different layers. In terms of biomass, the oxygenic layers of the community were dominated by Cyanobacteria of the Halothece, Spirulina, and Phormidium types, but cell counts (based on 4′,6′-diamidino-2-phenylindole staining) and molecular surveys (clone libraries of PCR-amplified genes for 16S rRNA) showed that oxygenic phototrophs were outnumbered by the other constituents of the community, including chemotrophs and anoxygenic phototrophs. Bacterial clone libraries were dominated by phylotypes affiliated with the Bacteroidetes group and both photo- and chemotrophic groups of α-proteobacteria. Green filaments related to the Chloroflexi were less abundant than reported from hypersaline microbial mats growing at lower salinities and were only detected in the deepest part of the anoxygenic phototrophic zone. Also detected were nonphototrophic γ- and δ-proteobacteria, Planctomycetes, the TM6 group, Firmicutes, and Spirochetes. Several of the phylotypes showed a distinct vertical distribution in the crust, suggesting specific adaptations to the presence or absence of oxygen and light. Archaea were less abundant than Bacteria, their diversity was lower, and the community was less stratified. Detected archaeal groups included organisms affiliated with the Methanosarcinales, the Halobacteriales, and uncultured groups of Euryarchaeota.  相似文献   

9.
The rates of microbial processes and phylogenetic diversity of the microorganisms responsible for organic matter production and decomposition in the benthic communities and bottom sediments of the rivers Solyanka, Lantsug, Khara, Chernavka, and Bol’shaya Smorogda (Lake Elton area, Volgograd oblast, Russia) were studied. The biomass and primary production of cyano–bacterial communities varied significantly within the ranges of 20–903 mg Chl a/m2 and 0.2–21 mg C/(m2 h), respectively. Depending on the season, the share of anoxygenic CO2 fixation varied from 20% to the values comparable to the rate of oxygenic photosynthesis. The total heterotrophic activity of microbial communities determined as the rate of dark CO2 assimilation varied from 31 to 750 μmol/(dm3 day) in the mats and from 3 to 137 μmol/(dm3 day) in the sediments. The rates of sulfate reduction and hydrogenotrophic methanogenesis varied from 10 to 2621 μmol S/dm3 day) and from 1.5 to 323 nmol CH4/(dm3 day), respectively. High-throughput sequencing of the 16S rRNA genes in cyano–bacterial mats revealed microorganisms belonging to 20 phyla, with the sequences of Cyanobacteria, Proteobacteria, and Bacteroidetes being the most numerous.  相似文献   

10.
The uptake of nitrate, nitrite and ammonium by Codium fragile subsp. tomentosoides (van Goor) Silva was measured at different combinations of temperature (6–30 C) and irradiance (0–140 μEin.m-2. s-1). Uptake of all three forms of N was greater at 12–24 C than at 6 and 30 C. Although uptake was stimulated by light, saturation occurred at relatively low irradiance (7–28 μEin m-2 s-1, depending on the N source and temperature). The Michaelis-Menten uptake constants (Vmax K)varied with temperature. Vmax was greatest at intermediate temperatures and K was lowest at lower temperatures. The Vmaxfor NH4+ was higher and the K, for NH4+was lower than those for NO3-- and NO2--. Codium was capable of simultaneously taking up all three forms of inorganic N although the presence of NH4+ reduced the uptake of both NO3-- and NO2--. The results of this study indicate that part of the ecological success of Codium in a N-limited environment may be due to its N uptake capabilities.  相似文献   

11.
Habitat-simulating media were used with the Hungate anaerobic roll tube technique to enumerate culturable anaerobic photosynthetic bacteria in sediment, tidal waters, and Spartina alterniflora plant samples collected from the salt marsh at Sapelo Island, Ga. No phototrophs were detected in samples of creekside (low marsh) sediment or in tidal waters in creekside regions. In the high marsh region, 90% of anaerobic phototrophic bacteria occurred in the top 5 mm of sediment and none were detected below 6 mm. There was a seasonal variation, with maximal populations occurring in summer and fall (mean, 4.4 × 105 phototrophs g of dry sediment−1) and minimal numbers occurring in winter (mean, 3.9 × 103 phototrophs g of dry sediment−1). During winter and late spring, phototrophs had a patchy distribution over the high marsh sediment surface. In contrast, during late summer they had a random uniform distribution. Tidal water collected over high marsh sediment contained an average of 8.7 × 102 phototrophs ml−1, with no significant seasonal variation. Anaerobic phototrophic bacteria were also cultured from the lower stem tissue of S. alterniflora growing in both the high (4.3 × 104 phototrophs g of dry tissue−1) and creekside (4.9 × 104 phototrophs g of dry tissue−1) marsh regions. Chromatium buderi, Chromatium vinosum, Thiospirillum sanguineum, Rhodospirillum molischianum, and Chlorobium phaeobacteroides were the predominant anaerobic phototrophic species cultured from high marsh sediment. The two Chromatium species were dominant.  相似文献   

12.
All of the common cytochalasins activate superoxide anion release and exocytosis of β-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 2 μM cytochalasin A, C >μM cytochalasin B ? 4–5 μM cytochalasin D, E. While maximal rates of O2? release and extents of exocytosis require extracellular calcium (1–2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibited either cytochalasin B- or E-stimulated O2? production with IC50 values of 5–10 mM and inhibition occurs whether Cl?, NO3? or SCN? is the anion added with Na+ or K+. Release of β-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl (IC50 ≈ 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of β-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2? or β-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

13.
Forest fires often result in a series of biogeochemical processes that increase soil nitrate (NO3 ?) concentrations for several years; however, the dynamic nature of inorganic nitrogen (N) cycling in the plant–microbe–soil complex makes it challenging to determine the direct causes of increased soil NO3 ?. We measured gross inorganic N transformation rates in mineral soils 2 years after wildfires in three central Idaho coniferous forests to determine the causes of the elevated soil NO3 ?. We also measured key factors that could affect the soil N processes, including temperature during soil incubation in situ, soil water content, pH and carbon (C) availability. We found no significant differences (P = 0.461) in gross nitrification rates between burned and control soils. However, microbial NO3 ? uptake rates were significantly lower (P = 0.078) in burned than control soils. The reduced consumption of NO3 ? caused slightly elevated NO3 ? concentrations in the burned soils. C availability was positively correlated with microbial NO3 ? uptake rates. Despite reduced microbial NO3 ? uptake capacity in the burned soils, soil microbes were a strong enough N sink to maintain low soil NO3 ? concentrations 2 years post fire. Soil NH4 + concentrations between the treatments were not significantly different (P = 0.673). However, gross NH4 + production and microbial uptake rates in burned soils were significantly lower (P = 0.028 and 0.035, respectively) than in the controls, and these rates were positively correlated with C availability. Our results imply that C availability is an important factor regulating soil N cycling of coniferous forests in the region.  相似文献   

14.
13C metabolism analysis of a microbial community is often hindered by the time-consuming and complicated separation procedure for a single species. However, a “reporter protein,” produced uniquely by one cell type, retains 13C fingerprint information in microbial consortia. This study describes the use of photosystem I (PSI), a multi-subunit protein complex universally found in oxygenic phototrophs, as a reliable reporter protein to probe microalgal metabolism (i.e., cyanobacterium Synechocystis sp. PCC 6803) in a mixed culture with heterotrophic bacteria (i.e., Escherichia coli). We demonstrate that efficient purification of PSI and subsequent 13C-based amino acid analyses may decipher photomixotrophic metabolism of Synechocystis 6803 in the coculture. This study also indicates that a supplement of NaHCO3 at high concentration could significantly improve the robustness of cyanobacterial growth against bacterial contamination.  相似文献   

15.
Upon start-up of a rapid sand filter fed with groundwater containing Mn2+ and NH4+, the first to be removed was NH4+, which was oxidized to NO2 -. After both NH4+ and NO2 -. were completely oxidized to NO3 -, the removal of Mn2+ commenced. Batch experiments showed that the addition of Nitrosomonas europaea and Nitrobacter winogradskyi stimulated the Mn2+ removal by sandfilter microbial consortia. NO2 -. was found to have a marked inhibitory effect on the removal of Mn2+ and could reduce the removal rate by half. In this respect, NO2 --mediated chemical reduction of manganese oxide was demonstrated at slightly acidic pH values. In pure cultures of Nitrosomonas europaea and Nitrobacter winogradskyi, no Mn2+ oxidation occurred, but reduction of MnO2 to Mn2+ was found when NO2 -. accumulated. These results indicate that the development of NO2/-. oxidizers is critical in the removal of Mn2+ in rapid sand filters. By oxidizing NO2 -. NO2 -. oxidizers eliminate the negative effect of NO2 -. on the biological oxidation of Mn2+.  相似文献   

16.
An assay for lipophilic pigments in phototrophic microbial mat communities using reverse phase-high performance liquid chromatography was developed which allows the separation of 15 carotenoids and chloropigments in a single 30 min program. Lipophilic pigments in a laminated mat from a commercial salina near Laguna Guerrero Negro, Baja California Sur, Mexico reflected their source organims. Myxoxanthopyll, echinenone, canthaxanthin, and zeaxanthin were derived from cyanobacteria; chlorophyll c, and fucoxanthin from diatoms; chlorophyll a from cyanobacteria and diatoms; bacteriochlorophylls a and c, bacteriophaeophytin a, and γ-carotene from Chloroflexus spp.; and β-carotene from a variety of phototrophs. Sensitivity of detection was 0.6–6.1 ng for carotenoids and 1.7–12 ng for most chloropigments. This assay represents a significant improvement improvement over previous analyses of lipophilic pigments in microbial mats and promises to have a wider application to other types of phototrophic communities.  相似文献   

17.
Seasonal variations in nitrate and organic nitrogen content along the wing and midrib of Alaria esculenta (L.) Grev. lamina have been compared with the NO3- cycle in the sea and yearly growth pattern of the blade. Throughout the year, organic N is highest in blade meristem, while NO3- distribution is less consistent. NO3-in blades reaches a peak in March (ca. 25–28 μM), whereas maximum relative accumulation, 3,300X ambient seawater level, occurs in October. Content of NO3- and organic N in the blade decreases in concert with the decline of seawater NO3- in April. The three periods of rapid blade growth are not correlated with a specific organic N content in the blade meristem. Laboratory experiments suggest that low NO3- and elevated seawater temperature are not the major factors retarding Alaria blade growth during summer and early fall in nature.  相似文献   

18.
A procedure is described for the isolation from the phototrophic procaryole Anacystis nidulans of [U-14C]-labelled glycogen, with high specific radioactivity,formed when NaH14CO3 was added to non-dividing cells that continued to photoassimilate CO2. [U-14C]-Labelled glycogen was then treated with isoamylase (EC 3.2.1.68), isoamylase plus beta-amylase (EC 3.2.1.2), or glucoamylase (EC 3.2.1.3) to give [U-14C]-labelled maltosaccharides, maltose-U-14C, or d-glucose-U-14C, respectively.  相似文献   

19.
Einsteinium-253 was obtained by irradiation of 100–200 μg of californium-252 by the flux of thermal neutrons 2-5 X 1014 neutrons cm?2 s?1 during 500–900 h. For the separation of einsteinium from californium and neodimium, which was used as a carrier, the chromatographic method of separation on the Aminex Q-15S resin with particles of 20 to 25 μm was applied.Einsteinium was eluated by a solution of α-oxyisobutirate of ammonium (0.14 M) with pH = 4.95 at room temperature. The coefficient of separation of einsteinium and californium under these conditions is equal to 1.62. The coefficient of purification of einsteinium from californium is ca. 105.  相似文献   

20.
Heliobacteria are a recently discovered group of anoxygenic phototrophic bacteria, first described in 1983. Heliobacteria contain bacteriochlorophyll g, a pigment unique to species of this group, and synthesize the simplest photosynthetic complexes of all known phototrophs. Also, unlike all other phototrophs, heliobacteria lack a mechanism for autotrophy and produce endospores. Four genera of heliobacteria containing a total of 10 species are known. Species of the genera Heliobacterium, Heliobacillus, and Heliophilum grow best at neutral pH, whereas species of Heliorestis are alkaliphilic. Heliobacterium, Heliobacillus, and Heliophilum species form one phylogenetic clade of heliobacteria, while Heliorestis species form a second within the phylum Firmicutes of the domain Bacteria. Heliobacteria have a unique ecology, being primarily terrestrial rather than aquatic phototrophs, and may have evolved a mutualistic relationship with plants, in particular, rice plants. The genome sequence of the thermophile Heliobacterium modesticaldum supports the hypothesis that heliobacteria are “minimalist phototrophs” and that they may have played a key role in the evolution of phototrophic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号