首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Yuan LC  Luo YB  Thien LB  Fan JH  Xu HL  Chen ZD 《Annals of botany》2007,99(3):451-460
BACKGROUND AND AIMS: The mutualistic interaction between insects and flowers is considered to be a major factor in the early evolution of flowering plants. The Schisandraceae were, until now, the only family in the ANITA group lacking information on pollination biology in natural ecosystems. Thus, the objective of this research was to document the pollination biology and breeding system of Schisandra henryi. METHODS: Field observations were conducted in three populations of S. henryi and the floral phenology, floral characters and insect activities were recorded. Floral fragrances were sampled in the field and analysed using TCT-GC-MS. Floral thermogenesis was measured with a TR-71U Thermo Recorder. Pollen loads and location of pollen grains on insect bodies (including the gut) were checked with a scanning electron microscope and under a light microscope. KEY RESULTS: Schisandra henryi is strictly dioecious. Male flowers are similar to female flowers in colour, shape, and size, but more abundant than female flowers. The distance between tepals and the androecium or gynoecium is narrow. Neither male nor female flowers are fragrant or thermogenic. Schisandra henryi is pollinated only by adult female Megommata sp. (Cecidomyiidae, Diptera) that eat the pollen grains as extra nutrition for ovary maturation and ovipositing. Both male and female flowers attract the pollinators using similar visual cues and thus the female flowers use deceit as they offer no food. CONCLUSIONS: Schisandra henryi exhibits a specialized pollination system, which differs from the generalized pollination system documented in other ANITA members. Pollen is the sole food resource for Megommata sp. and the female flowers of S. henryi attract pollinators by deceit. This is the first report of predacious gall midges utilizing pollen grains as a food source. The lack of floral thermogenesis and floral odours further enforces the visual cues by reducing attractants for other potential pollinators.  相似文献   

2.
A previously undescribed pollination system involving a monoecious tree species, Artocarpus integer (Moraceae), pollinator gall midges, and fungi is reported from a mixed dipterocarp forest in Sarawak, Borneo. The fungus Choanephora sp. (Choanephoraceae, Mucorales, Zygomycetes) infects male inflorescences of A. integer, and gall midges (Contarinia spp., Cecidomyiinae, Diptera) feed on the fungal mycelia and oviposit on the inflorescence. Their larvae also feed on the mycelia and pupate in the inflorescence. The gall midges are also attracted by female inflorescences lacking mycelia, probably due to a floral fragrance similar to that of male inflorescences. Because of the sticky pollen, dominance of Contarinia spp. in flower visitors, and pollen load observed on Contarinia spp. collected on both male and female inflorescences, Artocarpus integer is thought to be pollinated by the gall midges. Although several pathogenic fungi have been reported to have interactions with pollinators, this is the first report on a pollination mutualism in which a fungus plays an indispensable role. The pollination system described here suggests that we should be more aware of the roles fungi can play in pollinations.  相似文献   

3.
  1. Flowering plants in tropical rainforests rely heavily on pollen vectors for successful reproduction. Research into pollination systems in tropical rainforests is dominated by canopy species, while subcanopy plant–pollinator interactions remain under‐represented. The microclimate beneath the rainforest canopy is characterized by low light levels and is markedly different from the canopy environment that receives more light energy.
  2. We studied the floral attractants and floral visitors of a dioecious, subcanopy tree, Fontainea picrosperma (Euphorbiaceae), in the Wet Tropics bioregion of northern Queensland, Australia.
  3. We found that wind pollination is rare and male and female flowers do not produce nectar. Female flowers are likely pollinated due to their perceptual similarity to pollen‐offering male flowers. Female flowers had the same scent profile as male flowers, and floral scent was an important floral attractant that acted to regulate pollinator behavior. The two most abundant scent compounds present in the floral bouquet were benzyl alcohol and 4‐oxoisophorone. These compounds are ubiquitous in nature and are known to attract a wide variety of insects. Both day‐time and night‐time pollinators contributed to successful pollen deposition on the stigma, and diurnal flower visitors were identified from several orders of insects including beetles, flies, predatory wasps, and thrips. Fontainea picrosperma is therefore likely to be pollinated by a diverse array of small insects.
  4. Synthesis. Our data indicate that F. picrosperma has a generalist, entomophilous pollination syndrome. The rainforest subcanopy is a distinctive environment characterized by low light levels, low or turbulent wind speeds, and relatively high humidity. Female flowers of F. picrosperma exhibit cost‐saving strategies by not producing nectar and mimicking the smell of reward‐offering male flowers. Insects opportunistically forage on or inhabit flowers, and pollination occurs from a pool of small insects with low energy requirements that are found beneath the rainforest canopy.
  相似文献   

4.
Ambophily, the mixed mode of wind and insect pollination is still poorly understood, even though it has been known to science for over 130 years. While its presence has been repeatedly inferred, experimental data remain regrettably rare. No specific suite of morphological or ecological characteristics has yet been identified for ambophilous plants and their ecology and evolution remain uncertain. In this review we summarise and evaluate our current understanding of ambophily, primarily based on experimental studies. A total of 128 ambophilous species – including several agriculturally important crops – have been reported from most major habitat types worldwide, but this probably represents only a small subset of ambophilous species. Ambophilous species have evolved both from wind- and insect-pollinated ancestors, with insect-pollinated ancestors mostly representing pollination by small, generalist flower visitors. We compiled floral and reproductive traits for known ambophilous species and compared our results to traits of species pollinated either by wind or by small generalist insects only. Floral traits were found to be heterogeneous and strongly overlap especially with those of species pollinated by small generalist insects, which are also the prominent pollinator group for ambophilous plants. A few ambophilous species are only pollinated by specialised bees or beetles in addition to pollination by wind. The heterogeneity of floral traits and high similarity to generalist small insect-pollinated species lead us to conclude that ambophily is not a separate pollination syndrome but includes species belonging to different insect- as well as wind-pollination syndromes. Ambophily therefore should be regarded as a pollination mode. We found that a number of ecological factors promoted the evolution of ambophily, including avoidance of pollen limitation and self-pollination, spatial flower interference and population density. However, the individual ecological factors favouring the transition to ambophily vary among species depending on species distribution, habitat, population structure and reproductive system. Finally, a number of experimental studies in combination with observations of floral traits of living and fossil species and dated phylogenies may indicate evolutionary stability. In some clades ambophily has likely prevailed for millions of years, for example in the castanoid clade of the Fagaceae.  相似文献   

5.
We studied the patterns of adaptive radiation in Disa, a large orchid genus in southern Africa. A cladogram for 27 species was constructed using 44 morphological characters. Pollination systems were then mapped onto the phylogeny in order to analyze pathways of floral evolution. Shifts from one pollination system to another have been a major feature of the evolutionary diversification of Disa. Unlike many plant genera that are pollinated mainly by a single group of insects, radiation in Disa has encompassed nearly all major groups of pollinating insects; in all, 19 different specialized pollination systems have been found in the 27 species included in this analysis. Another striking pattern is the repeated evolution of broadly similar pollination systems in unrelated clades. For example, butterfly-pollinated flowers have evolved twice; showy deceptive flowers pollinated by carpenter bees, twice; long-spurred flowers pollinated by long-tongued flies, four times; night-scented flowers pollinated by moths, three times; and self-pollination, three times. This suggests that a few dominant pollinator species in a region may be sufficient to generate diversification in plants through repeated floral shifts that never retrace the same pathways.  相似文献   

6.
The fruits of Schisandra sphenanthera (dioecious) are used to produce ‘Nan-Wuweizi’, an important Chinese medicine. However, long-term exploitation and habitat destruction have threatened these plants in nature. Knowledge of the reproductive biology of S. sphenanthera is essential to help formulate a conservation strategy for these plants. Field studies were conducted at Jigong Mountain (JGM) and Jinji Valley (JJV) in Henan and Hubei Provinces, China. The reproductive biology of S. sphenanthera was analyzed at these sites, including population structure, pollination, floral morphology, and natural fruit set. The 11 populations at two sites were male biased. The primary floral visitors were gall midges (Resseliella sp., Cecidomyiidae; Diptera) and thrips (Thrips flavidulus; Thysanoptera). Floral visitor exclusion experiments and pollen load analysis indicate that gall midges are the primary pollinators. Pollen was the only floral reward for the gall midges. Female flowers attracted pollinators using deceit. The natural fruit set ratio in the cut forest site (JJV) was significantly lower than that at the JGM site, where habitats of S. sphenanthera were well preserved. This indicates that the life cycles of S. sphenanthera and the pollinating insects are vulnerable in disturbed (or cut) habitats.  相似文献   

7.
? Premise of the study: Flower heating is known from a few species in 11 of the c. 450 families of flowering plants. Flowers in these families produce heat metabolically and are adapted to beetles or flies as pollinators. Here, we focus on the Schisandraceae, an American/Asian plant family known to exhibit flower heating in some species, but not others, raising the question of the adaptive function of heat production. ? Methods: We used field observations, experiments, and ancestral trait reconstruction on a molecular phylogeny for Schisandraceae that includes the investigated species. ? Key results: At least two Chinese species of Illicium are exclusively pollinated by gall midges that use the flowers as brood sites (not for pollen feeding). Continuous monitoring of flower temperatures revealed that the highest temperatures were attained after the flowers' sexual functions were over, and experiments showed that post-anthetic warming benefited larval development, not fruit development. Midge larvae in flowers with trimmed tepals (and hence a lower temperature) died, but fruit set ratios remained unchanged. Based on the DNA phylogeny, gall midge pollination evolved from general fly/beetle pollination several times in Schisandraceae, with some species adapted to flower-breeding midges, others to pollen-feeding midges. ? Conclusions: Flower heating may be an ancestral trait in Schisandraceae that became co-opted in species pollinated by flower-breeding midges requiring long-persistent warm chambers for larval development.  相似文献   

8.
Pollinators have long been known to select for floral traits, but the nature of this relationship has been little investigated in trap pollination systems. We investigated the trapping devices of 15 Arum spp. and compared them with the types of insects trapped. Most species shared a similar general design of trap chamber walls covered in downward‐pointing papillate cells, lacunose cells in the chamber wall and elongated sterile flowers partially blocking the exit of the trap. However, there was significant variation in all these morphological features between species. Furthermore, these differences related to the type of pollinator trapped. Most strikingly, species pollinated by midges had a slippery epidermal surface consisting of smaller papillae than in species pollinated by other insects. Midge‐pollinated species also had more elongated sterile flowers and tended to have a larger lacunose area. We conclude that pollination traps evolve in response to the type of insect trapped and that changes to the slippery surfaces of the chamber wall are an important and previously little recognized variable in the design of pollination traps. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 385–397.  相似文献   

9.
The plants of Kadsura longipedunculata (Schisandraceae) are monoecious and possess either red or yellow male flowers (the androecium), with yellow tepals, and yellow female flowers. All flower types simultaneously produce heat and floral odours (dominated by methyl butyrate) throughout a 4–5-h nocturnal period. The flowers are pollinated only by female, pollen-eating Megommata sp. (Cecidomyiidae). Pollen is the only reward, and female flowers use the same attractants as male flowers but offer no food (pollination by deceit). Open pollinated flowers in nature varied in fruit set from 8 to 92%. Megommata (subfamily Cecidomyiinae, supertribe Cecidomyiidi), consists of six described species, which feed on Coccoidea (scale insects) and are distributed worldwide.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 523–536.  相似文献   

10.
Pollination of Neotropical dioecious trees is commonly related to generalist insects. Similar data for non‐tree species with separated genders are inconclusive. Recent studies on pollination of dioecious Chamaedorea palms (Arecaceae) suggest that species are either insect‐ or wind‐pollinated. However, the wide variety of inflorescence and floral attributes within the genus suggests mixed pollination mode involving entomophily and anemophily. To evaluate this hypothesis, we studied the pollination of Chamaedorea costaricana, C. macrospadix, C. pinnatifrons and C. tepejilote in two montane forests in Costa Rica. A complementary morphological analysis of floral traits was carried out to distinguish species groups within the genus according to their most probable pollination mechanism. We conducted pollinator exclusion experiments, field observations on visitors to pistillate and staminate inflorescences, and trapped airborne pollen. A cluster analysis using 18 floral traits selected for their association with wind and insect pollination syndromes was carried out using 52 Chamaedorea species. Exclusion experiments showed that both wind and insects, mostly thrips (Thysanoptera), pollinated the studied species. Thrips used staminate inflorescences as brood sites and pollinated pistillate flowers by deception. Insects caught on pistillate inflorescences transported pollen, while traps proved that pollen is wind‐borne. Our empirical findings clearly suggest that pollination of dioecious Chamaedorea palms is likely to involve both insects and wind. A cluster analysis showed that the majority of studied species have a combination of floral traits that allow for both pollination modes. Our pollination experiments and morphological analysis both suggest that while some species may be completely entomophilous or anemophilous, ambophily might be a common condition within Chamaedorea. Our results propose a higher diversity of pollination mechanisms of Neotropical dioecious species than previously suggested.  相似文献   

11.
Chrysophyllum (Chrysophylloideae, Chrysophylleae) is the second largest genus in the Sapotaceae. Studies of pollination ecology in this genus are non-existent, although there are records of entomophily for this family. Considering the lack of detailed studies on pollination ecology and sexual systems in Chrysophyllum species, we investigate the floral morphology and biology and floral visitors of Chrysophyllum marginatum to verify which sexual system is present in the studied population and whether flowers of this species are visited and pollinated by different insect groups. The population of C. marginatum has weak and cryptic gynomonoecy because the plants produce a low percentage of functionally pistillate flowers (4.2%) and these flowers appear to be perfect flowers (hermaphrode). Flowers of C. marginatum are phenotypically, ecologically and functionally generalist because: (a) they are actinomorphic, open and not restrictive in terms of access to floral resources; (b) they are visited by 26 species of insects that are potential pollinators; and (c) among these species several groups can be effective pollinators, mainly bees and flies, according to the most effective pollinator principle. We consider bees and flies to be the main pollinator group of C. marginatum, due to their high visitation rate, richness and intrafloral visiting behavior, and because they especially forage among plant individuals and are able to promote xenogamy. Nectaries were found in the ovary base and osmophores in the petal margins, as floral attractants. For Chrysophyllum, this is the first record of gynomonoecy and for the family this is considered the second record. Chrysophyllum marginatum has generalist and entomophilous pollination, as recorded in other Sapotaceae Neotropical species.  相似文献   

12.
The distribution area, phenology, sex polymorphism, floral characteristics and breeding system of Silene stockenii (Caryophyllaceae), a narrowly endemic annual species of southern Spain, were studied. Only five populations were found in a total area of 2 ha. Silene stockenii is a gynodioecious species with fully female, fully hermaphrodite and intermediate plants bearing hermaphrodite, male-sterile, and partially male-sterile flowers. Male-sterile flowers are typically smaller than hermaphrodites. Nectar production was significantly higher in hermaphrodite plants and during the female phase of hermaphrodite flowers. The red flowers appear during the spring (March-May) and are pollinated by long-tongued Bombyliidae. Hand pollinations revealed that the species is self-compatible; however, natural self-pollination is rare due to marked protandry. Hand pollination significantly increased the number of seeds per fruit and seed set, indicating limited pollination in the field. In controlled pollinations female plants of S. stockenii produced higher seed set than hermaphrodite plants, but in freely pollinated plants fruit set and seed production was similar in both morphs, indicating that pollinators do not discriminate in favour of hermaphrodite plants.  相似文献   

13.

Background and Aims

It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds.

Methods

Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out.

Key Results

Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha.

Conclusions

The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico).  相似文献   

14.
According to the concept of pollination syndromes, floral traits reflect specialisation to a particular pollinator or set of pollinators. However, the reproductive biology of endemic, and often specialised, plants may require increased attention as climate change accelerates worldwide. Species of Roscoea endemic to the Himalayan region have striking orchid-like flowers with long corolla tubes, suggesting pollination by long-tongued insects. Until now, the reproductive biology of species of Roscoea has been poorly documented. We investigated the floral biology, breeding system and pollination ecology of R. cautleoides and R. humeana, from Hengduan Mountains, a global biodiversity hotspot in southwest China. We also tested whether floral longevity increases pollination success. Pollination experiments showed that the two species were self-compatible and depended on insects for fruit production. Over several flowering seasons we did not observe any potential pollinators with long tongues that matched the corolla tube visiting flowers in centres of distribution. The principal pollinators observed were pollen-collecting generalist bees, with low visitation frequencies. In general, members of the ginger family are characterised by short-lived (usually 1 day) flowers, but flowers of R. cautleoides and R. humeana last 8 and 6 days, respectively. Removing stigmas decreased fruit set in both study populations. Our results suggest that the original pollinators may have been long-tongued insects that are now absent from the Chinese Himalayas because habitats have responded to climate change. However, long-lived and self-compatible flowers, coupled with the presence of generalist pollinators, are traits that have allowed these gingers to reproduce and continue to persist in the alpine habitats.  相似文献   

15.
Thousands of plant species worldwide are dependent on birds for pollination. While the ecology and evolution of interactions between specialist nectarivorous birds and the plants they pollinate is relatively well understood, very little is known on pollination by generalist birds. The flower characters of this pollination syndrome are clearly defined but the geographical distribution patterns, habitat preferences and ecological factors driving the evolution of generalist‐bird‐pollinated plant species have never been analysed. Herein I provide an overview, compare the distribution of character states for plants growing on continents with those occurring on oceanic islands and discuss the environmental factors driving the evolution of both groups. The ecological niches of generalist‐bird‐pollinated plant species differ: on continents these plants mainly occur in habitats with pronounced climatic seasonality whereas on islands generalist‐bird‐pollinated plant species mainly occur in evergreen forests. Further, on continents generalist‐bird‐pollinated plant species are mostly shrubs and other large woody species producing numerous flowers with a self‐incompatible reproductive system, while on islands they are mostly small shrubs producing fewer flowers and are self‐compatible. This difference in character states indicates that diverging ecological factors are likely to have driven the evolution of these groups: on continents, plants that evolved generalist bird pollination escape from pollinator groups that tend to maintain self‐pollination by installing feeding territories in single flowering trees or shrubs, such as social bees or specialist nectarivorous birds. This pattern is more pronounced in the New compared to the Old World. By contrast, on islands, plants evolved generalist bird pollination as an adaptation to birds as a reliable pollinator group, a pattern previously known from plants pollinated by specialist nectarivorous birds in tropical mountain ranges. Additionally, I discuss the evolutionary origins of bird pollination systems in comparison to systems involving specialist nectarivorous birds and reconstruct the bird pollination system of Hawaii, which may represent an intermediate between a specialist and generalist bird pollination system. I also discuss the interesting case of Australia, where it is difficult to distinguish between specialist and generalist bird pollination systems.  相似文献   

16.
Pollination systems in orchids tend to be specialized as a consequence of restrictive floral morphology and specific advertising signals. Here we document a notable exception: Disa fragrans subsp. fragrans, a taxon from the Drakensberg Mountains of South Africa, which is pollinated by insects belonging to at least four orders (flies, beetles, bees, and moths). Pollinaria of D. fragrans are attached to the feet of these visitors and pollination thus occurs in a rather haphazard fashion. Nevertheless, its pollination success and pollen transfer efficiency are comparable to those of its close relative, Disa sankeyi, which is pollinated by a single genus of wasps. D. fragrans has an exceptionally strong floral scent: volatile emission is 19–86 μg per inflorescence per hour, which is up to 100 fold greater than in D. sankeyi. The scent bouquet is comprised of at least 46 compounds, mostly benzenoids and phenylpropanoids, which are known to be general attractants to a wide range of insects. In contrast to D. sankeyi, the flowers of D. fragrans have a high level of spectral purity (chroma) as is typical of many generalist insect-pollinated plants. At a site where D. fragrans co-occurs with D. sankeyi we found a plant with intermediate characteristics that may be a hybrid between the two taxa. The novel case of generalist pollination in D. fragrans documented here serves as an example of how floral advertising traits might evolve during an evolutionary shift from specialized to generalized pollination.  相似文献   

17.
The evolution of beetle pollination in a South African orchid   总被引:1,自引:0,他引:1  
The pollination biology of the orchid Ceratandra grandiflora was investigated in order to determine whether the partial loss of a specialized floral reward (i.e., oil) was the result of an incomplete shift from one specialized pollinator to another. In the three-species clade of section Ceratandra, there has been a progressive loss of the oil-secreting callus. lt is always present in C atrata, sometimes present in C. grandiflora, and never present in C. globosa. Thirty-nine to 67% of individuals in populations of C. grandiflora bear the callus gland, but gland presence has no signifikant effect on the proportion of flowers pollinated. Pollinator observations show that the shift in pollinators is complete and that the oil-secreting callus is a vestige of the ancestral oil-bee pollination system that no longer plays a role in pollination. C grandiflora is pollinated almost exclusively by a single species of hopliine beetle (Scarabaeidae). Experiments with artificial flower traps indicate that color alone can explain the attraction of beetles to C. grandiflora, despite the absence of a floral reward. The proportion of C. grandiflora flowers pollinated (50.2 and 61.1%; N = 524 and 324 flowers, respectively) is unusually high for a plant that relies on generalized food deception and is probably due to the use of inflorescences as mating sites (i.e., rendezvous pollination).  相似文献   

18.
Aiming to estimate the rate of exploitation of the floral resources of Sparattosperma leucanthum (Vell.) K. Schum. as well as the interaction with their floral visitors in the pollination, the number of visits by flower was sampled, according to the type of visitation, the collected resource and the visitor's behavior during the forage for flowers. The floral visitors were grouped into seven guilds, organized in decreasing order of benefit to the S. leucanthum flower's pollination: effective pollinator, occasional pollinator, endogamic pollinator, generalist visitor, thievery visitor, thievery-pillager ant and pillager visitor. The total of 48.2 +/- 8.84 visits were recorded by flower. Nearly 50% of the visits resulted in nectar thief or pillage, which posed some problems to the reproduction of S. leucanthum, such as the drop in the attractiveness to pollinators and the harm to the flower's reproductive tissues. Trigona spinipes (Fabr.) (Hymenoptera: Apidae) was considered the most harmful species owing to the high frequency of pillage and forage. Bombus sp1, however, was probably the species that pollinated S. lecanthum flowers the most, making use of the crossed pollination.  相似文献   

19.
  • The epidermal cells of flowers come in different shapes and have different functions, but how they evolved remains largely unknown. Floral micro‐texture can provide tactile cues to insects, and increases in surface roughness by means of conical (papillose) epidermal cells may facilitate flower handling by landing insect pollinators. Whether flower microstructure correlates with pollination system remains unknown.
  • Here, we investigate the floral epidermal microstructure in 29 (congeneric) species pairs with contrasting pollination system. We test whether flowers pollinated by bees and/or flies feature more structured, rougher surfaces than flowers pollinated by non‐landing moths or birds and flowers that self‐pollinate.
  • In contrast with earlier studies, we find no correlation between epidermal microstructure and pollination system. The shape, cell height and roughness of floral epidermal cells varies among species, but is not correlated with pollinators at large. Intriguingly, however, we find that the upper (adaxial) flower surface that surrounds the reproductive organs and often constitutes the floral display is markedly more structured than the lower (abaxial) surface.
  • We thus conclude that conical epidermal cells probably play a role in plant reproduction other than providing grip or tactile cues, such as increasing hydrophobicity or enhancing the visual signal.
  相似文献   

20.
Zheng  Guiling  Li  Peng  Pemberton  Robert  Luo  Yibo 《Ecological Research》2011,26(2):453-459
Most Cypripedium species are specialized orchids pollinated by, in a broad sense, bees or flies. Here we present the first evidence that a slipper orchid, Cypripedium flavum, is pollinated by both bees and flies, i.e., bumblebees and blowflies. Artificial pollination experiments demonstrated that the flowers of C. flavum are self-compatible, but need pollen vectors for successful reproduction. Field observations detected 25 insects visiting the flowers, and 14 of these insects entered into the labellum of the flowers, but only female bumblebees, Bombus hypnorum, B. remotus, and the blowfly Calliphora vomitoria exited of the labellum with pollen smears of C. flavum. The floral functional morphology of C. flavum appears to be more suited to bumblebees than to blowflies. The bumblebees are more efficient pollinators of the orchid, but blowflies are more frequent visitors, so they pollinated more flowers despite being less efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号