首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.

Background  

Microarray technology allows simultaneous measurement of thousands of genes in a single experiment. This is a potentially useful tool for evaluating co-expression of genes and extraction of useful functional and chromosomal structural information about genes.  相似文献   

2.

Background  

Although homeobox genes have been the subject of many studies, little is known about the main amino acid changes that occurred early in the evolution of genes belonging to different classes.  相似文献   

3.

Background  

The metastatic ability of tumor cells is determined by level of expression of specific genes that may be identified with the aid of cDNA microarray containing thousands of genes and can be used to establish the expression profile of disease related genes in complex biological system.  相似文献   

4.

Background  

Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes.  相似文献   

5.

Background  

Gene duplications are a source of new genes and protein functions. The innovative role of duplication events makes families of paralogous genes an interesting target for studies in evolutionary biology. Here we study global trends in the evolution of human genes that resulted from recent duplications.  相似文献   

6.

Background  

Understanding of the genetic architecture of plant UV-B responses allows extensive targeted testing of candidate genes or regions, along with combinations of those genes, for placement in metabolic or signal transduction pathways.  相似文献   

7.

Background  

One of the important goals of microarray research is the identification of genes whose expression is considerably higher or lower in some tissues than in others. We would like to have ways of identifying such tissue-specific genes.  相似文献   

8.

Background  

Coordinately regulated genes often physically cluster in eukaryotic genomes, for reasons that remain unclear.  相似文献   

9.

Background  

Microarray experiments, as well as other genomic analyses, often result in large gene sets containing up to several hundred genes. The biological significance of such sets of genes is, usually, not readily apparent.  相似文献   

10.
11.
12.

Background  

Earlier methods for detecting major genes responsible for a quantitative trait rely critically upon a well-structured pedigree in which the segregation pattern of genes exactly follow Mendelian inheritance laws. However, for many outcrossing species, such pedigrees are not available and genes also display population properties.  相似文献   

13.
14.

Background  

Direct synthesis of genes is rapidly becoming the most efficient way to make functional genetic constructs and enables applications such as codon optimization, RNAi resistant genes and protein engineering. Here we introduce a software tool that drastically facilitates the design of synthetic genes.  相似文献   

15.

Background  

Schizophrenia is a complex disorder with involvement of multiple genes.  相似文献   

16.
17.

Background  

All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.  相似文献   

18.

Background  

The effective functional analysis of male gametophyte development requires new tools enabling the spatially and temporally controlled expression of both marker genes and modified genes of interest. In particular, promoters driving expression at earlier developmental stages including microspores are required.  相似文献   

19.

Background  

Existing large-scale metabolic models of sequenced organisms commonly include enzymatic functions which can not be attributed to any gene in that organism. Existing computational strategies for identifying such missing genes rely primarily on sequence homology to known enzyme-encoding genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号