首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
B-cell receptor (BCR) signals are essential for B-cell differentiation, homeostasis and negative selection, which are regulated by the strength and quality of BCR signals. Recently, we identified a new adaptor protein, Swiprosin-1, in lipid rafts of B-cell lines that undergo apoptosis after BCR stimulation. During murine B-cell development, Swiprosin-1 exhibited highest expression in immature B cells of the bone marrow, but was also expressed in resting and activated splenic B cells and in non-lymphoid tissue, especially in the brain. Ectopic expression of Swiprosin-1 in the immature murine B-cell line WEHI231 enhanced spontaneous and BCR-induced apoptosis. In contrast, short hairpin RNA (shRNA)-mediated downregulation of Swiprosin-1 impaired specifically spontaneous and BCR-elicited apoptosis, but not BCR-induced G1 cell cycle arrest and upregulation of the cell cycle inhibitor p27(Kip1). In accordance, Swiprosin-1 abundance regulated net cell growth of WEHI231 cell populations through reciprocal regulation of Bcl-xL, but not Bim, thereby controlling spontaneous apoptosis. Swiprosin-1-enhanced apoptosis was blocked through nuclear factor kappaB-activating stimuli, namely B-cell-activating factor of the TNF family, anti-CD40 and lipopolysaccharide (LPS). This correlated with enhanced BCR-induced IkappaB-alpha phosphorylation and degradation in cells expressing a Swiprosin-1-specific shRNA. Finally, ectopic Swiprosin-1 expression enhanced BCR-induced cell death in primary, LPS-stimulated splenic B cells. Hence, Swiprosin-1 may regulate lifespan and BCR signaling thresholds in immature B cells.  相似文献   

2.
Engagement of the B cell Ag receptor (BCR) on immature B cells leads to growth arrest followed by apoptosis. Concomitant signaling through CD40 sustains proliferation and rescues the cells from apoptosis. Previously, we have shown that cross-linking CD40 on B cells stimulates the expression of A1, an antiapoptotic member of the Bcl-2 family, and that transduction of the murine B lymphoma line WEHI 231, a model for immature B cells, with A1 protected the cells against BCR-induced apoptosis. Here we demonstrate that A1 strongly interferes with activation of caspase-7, the major effector caspase activated after BCR cross-linking on WEHI 231 lymphoma cells. The pathway leading to activation of the effector caspase cascade including caspase-7 is unclear. Using retrovirally transduced WEHI 231 cell populations, we show that a catalytically inactive mutant of caspase-7 is cleaved almost as efficiently as the wild-type form, arguing against autocatalysis as the sole activating process. In contrast, overexpression of catalytically inactive caspase-9 strongly interferes with caspase-7 processing, poly(ADP-ribose) polymerase cleavage, and DNA laddering, suggesting a role for caspase-9 and hence for the mitochondrial pathway. The importance of the mitochondrial/caspase-9 pathway for BCR-triggered apoptosis is highlighted by our finding that both A1 and the mutant caspase-9 attenuate BCR-induced apoptosis. Thus, our data suggest that the BCR-mediated apoptotic signal in immature B cells spreads via a mitochondrial/caspase-9 pathway.  相似文献   

3.
4.
Signaling by the B cell antigen receptor (BCR) is essential for B lymphocyte homeostasis and immune function. In immature B cells, ligation of the BCR promotes growth arrest and apoptosis, and BCR-driven balancing between pro-apoptotic extracellular signal-regulated kinase 1 and 2 (ERK1/2) and anti-apoptotic phosphoinositide 3-kinase-dependent Akt seems to define the final cellular apoptotic response. Dysfunction of these late BCR signaling events can lead to the development of immunological diseases. Here we report on novel cyclic AMP-dependent mechanisms of BCR-induced growth arrest and apoptosis in the immature B lymphoma cell line WEHI-231. BCR signaling to ERK1/2 and Akt requires cyclic AMP-regulated Epac, the latter acting as a guanine nucleotide exchange factor for Rap1 and H-Ras independent of protein kinase A. Importantly, activation of endogenously expressed Epac by a specific cyclic AMP analog enhanced the induction of growth arrest (reduced DNA synthesis) and apoptosis (nuclear condensation, annexin V binding, caspase-3 cleavage and poly-ADP-ribose polymerase processing) by the BCR. Our data indicate that cyclic AMP-dependent Epac signals to ERK1/2 and Akt upon activation of Rap1 and H-Ras, and is involved in BCR-induced growth arrest and apoptosis in WEHI-231 cells.  相似文献   

5.
Signaling through the B cell antigen receptor (BCR) is a key determinant in the regulation of B cell physiology. Depending on additional factors, such as microenvironment and developmental stage, ligation of the BCR can trigger B lymphocyte activation, proliferation, or apoptosis. The regulatory mechanisms determining B cell apoptosis and survival are not completely known. Using the murine B lymphoma cell line WEHI-231 as a model system, we investigated the role of Bad phosphorylation, a pro-apoptotic member of the Bcl-2 family, in anti-IgM mediated apoptosis. For apoptotic analysis we focused in particular on the mitochondrial potential (deltapsi(m)) collapse which has been reported as a rate-limiting step in the BCR-induced cell death of immature B lymphocytes. Bad phosphorylation at serine 112, 136 and 155 was found in WEHI-231 cell control cultures and its hypophosphorylation on the three sites correlated with the appearance of apoptosis when cross-linking surface IgM. Furthermore, treatment of cells with specific PK inhibitors known to be involved in serine phosphorylation of Bad (LY294002 for PI3K and H-89 for PKA) mimiced or enhanced BCR-induced cell death. These results strongly suggest that regulation of Bad phosphorylation plays an active role in mediating anti-IgM-induced apoptosis of immature B cells.  相似文献   

6.
The B cell receptor (BCR)-elicited calcium flux results in activation of mature B cells. We have recently shown that the adaptor protein Swiprosin-1/EFhd2 (EFhd2) amplifies the BCR-induced calcium flux in B cell lines. EFhd2 is a calcium binding adaptor protein with two predicted EF-hands. Here we asked whether these domains are functional and control its function. Using a blot-overlay assay with radioactive calcium we show that both EF-hands of EFhd2 have an intrinsic capacity to bind calcium. Equilibrium centrifugation confirmed that EFhd2 binds 2 calcium ions, with an apparent Kd of 110 μM. Point mutations revealed that the conserved residues E116 and E152, which reside in the canonical calcium binding loop in EF-hands 1 and 2, are essential for calcium binding by EFhd2. These mutations as well as deletion of the EF-hands, in particular EF-hand 1, abolished the ability of EFhd2 to restore BCR-induced calcium signaling in EFhd2-deficient WEHI231 cells. N-terminal deletions, but not C-terminal deletions, acted similarly. Thus, the N-terminal part of EFhd2 as well as calcium binding to its EF-hands control the intracellular calcium concentration in response to BCR stimulation in WEHI231 cells. Hence, EFhd2 regulates the BCR-elicited calcium flux through a calcium-dependent positive feedback mechanism in WEHI231 cells.  相似文献   

7.
Crosslinking of the WEHI 231 lymphoma B cell receptor (BCR) leads to growth arrest followed by apoptosis. In a study of the role of lysosomal cysteine proteinases in BCR-mediated apoptosis we provide evidence that commitment to apoptosis correlates with a time-dependent increase in caspase and cathepsin activities. We also show that activation of cathepsins is a caspase-independent process, and caspase cascade activation is independent of lysosomal endopeptidases. BCR-induced nuclear fragmentation was not prevented, but rather delayed in the absence of detectable caspase and cathepsin activities, suggesting that BCR-driven apoptosis of these cells may use an alternative proteolytic mechanism independent of caspases and cathepsins.  相似文献   

8.
The molecular basis of B cell receptor (BCR)-induced apoptosis during the negative selection of immature B cells is largely unknown. We use transitional immature B cells that are highly susceptible to BCR-induced apoptosis to show that Pten is selectively required for BCR-mediated initiation of the mitochondrial death pathway. Specifically, deleting Pten, but not other pro-apoptotic molecules, abrogates BCR-elicited apoptosis and improves viability in wild-type immature B cells. We further identify a physiologically and significantly higher intracellular Pten level in immature B cells, as compared to mature B cells, which is responsible for low AKT activity and the propensity towards death in immature B cells. Restoration of AKT activity using a constitutive form of AKT or reduction of Pten to a level comparable with that seen in mature B cells rescues immature B cells from BCR-induced apoptosis. Thus, we provide evidence that Pten is an essential mediator of BCR-induced cell death, and that differential regulation of intracellular Pten levels determines whether BCR ligation promotes cell death or survival. Our findings provide a valuable insight into the mechanisms underlying negative selection and clonal deletion of immature B cells.  相似文献   

9.
CH31 B lymphomas represent a model for antigen-induced deletional tolerance of immature B lymphocytes, because cross-linking the B cell antigen receptor (BCR) induces G(1) phase arrest and apoptosis. We have recently demonstrated that BCR cross-linking leads to a transient activation of p38 mitogen-activated protein kinase (MAPK) in CH31 B cells. In this paper, we functionally characterize the role of p38 MAPK in BCR-induced apoptosis as well as evaluate the regulation of additional MAPKs by the BCR. We demonstrate that JNK and ERK activities are not affected by BCR cross-linking, suggesting that these MAPKs are not directly involved in initiating the apoptotic cascade. By contrast, we show that pretreatment of CH31 B cells with the highly specific p38 MAPK inhibitor SB203580 ablated both BCR-induced p38 MAPK activity and apoptosis. Pretreatment of CH31 cells with an inactive SB203580 analog, SB202474, did not prevent apoptosis. These findings establish a key role for p38 MAPK in antigen receptor-mediated apoptosis of CH31 B cells.  相似文献   

10.
Signals transduced through the B cell Ag receptor (BCR) drive B cell development. However, BCR-induced responses are developmentally regulated; immature B cells are tolerized following antigenic exposure while mature B cells are triggered to proliferate and differentiate. This differential responsiveness allows for the negative selection of self-reactive immature B cells while simultaneously allowing for clonal expansion of mature B cells in response to foreign Ags. Intrinsic differences in BCR-induced signal transduction at various stages of development may account for this functional dichotomy. We had previously demonstrated that the BCR-induced proliferation of mature B cells is accompanied by an increase in intracellular calcium levels and polyphosphoinositide bis phosphate (PIP2) hydrolysis. In contrast, immature B cells that undergo BCR-induced apoptosis increase intracellular calcium in the relative absence of PIP2 hydrolysis. Since PIP2 hydrolysis leads to the generation of diacylglycerol, a cofactor for protein kinase C (PKC) activation, these data suggested that an "imbalance" in BCR-induced signal transduction resulting from a relative inability to activate PKC may play a role in the susceptibility of immature B cells to BCR-induced apoptosis. In support of this hypothesis, we demonstrate that PKC activation can rescue immature B cells from BCR-induced apoptosis. Furthermore, the susceptibility of immature B cells to BCR-induced apoptosis is recapitulated in mature B cells that are either PKC depleted or are stimulated in the presence of PKC inhibitors, suggesting that an uncoupling of PKC activation from BCR-induced signaling is responsible for the apoptotic response of immature B cells.  相似文献   

11.
Engagement of antigen receptors on immature B cells induces apoptosis, while at the mature stage, it stimulates cell activation and proliferation. The difference in B cell receptor (BCR)-mediated signaling pathways regulating death or survival of B cells is not fully understood. We aimed to characterize the pathway leading to BCR-driven apoptosis. Transitional immature B cells were obtained from the spleen of sublethally irradiated and auto-reconstituted mice. We have detected a short-lived BCR-driven activation of mitogen-activated protein kinases (ERK1/2 and p38 MAPK) and Akt/PKB in transitional immature B cells that correlated with the lack of c-Fos expression, reduced phosphorylation of Akt substrates and a susceptibility for apoptosis. Simultaneous signaling through BCR and CD40 protected immature B cells from apoptosis, however, without inducing Bcl-2 expression. The BCR-induced apoptosis of immature B cells is a result of the collapse of mitochondrial membrane potential and the subsequent activation of caspase-3.  相似文献   

12.
In this study, we examined the contribution made by CD45 to B cell antigen receptor (BCR)-induced activation of mitogen-activated protein kinase (MAPK) family members. We found that CD45 negatively regulated BCR-induced c-Jun NH(2)-terminal kinase (JNK) and p38 activation in immature WEHI-231 cells, whereas in mature BAL-17 cells, CD45 positively regulated JNK and p38 activation and negatively regulated extracellular signal-regulated kinase activity. Furthermore, cooperative action of JNK and p38 dictated BCR-induced inhibition of growth. Thus, CD45 appears to differentially regulate BCR-induced activation of MAPK members, and can exert opposing effects on JNK and p38 in different cellular milieu, controlling the B cell fate.  相似文献   

13.
Prostaglandin E2 (PGE(2)), a major product of cyclooxygenase, exerts its functions by binding to four G protein-coupled receptors (EP1-4) and has been implicated in modulating angiogenesis. The present study examined the role of the EP4 receptor in regulating endothelial cell proliferation, migration, and tubulogenesis. Primary pulmonary microvascular endothelial cells were isolated from EP4(flox/flox) mice and were rendered null for the EP4 receptor with adenoCre virus. Whereas treatment with PGE(2) or the EP4 selective agonists PGE(1)-OH and ONO-AE1-329 induced migration, tubulogenesis, ERK activation and cAMP production in control adenovirus-transduced endothelial EP4(flox/flox) cells, no effects were seen in adenoCre-transduced EP4(flox/flox) cells. The EP4 agonist-induced endothelial cell migration was inhibited by ERK, but not PKA inhibitors, defining a functional link between PGE(2)-induced endothelial cell migration and EP4-mediated ERK signaling. Finally, PGE(2), as well as PGE(1)-OH and ONO-AE1-329, also promoted angiogenesis in an in vivo sponge assay providing evidence that the EP4 receptor mediates de novo vascularization in vivo.  相似文献   

14.
15.
Engagement of the B cell receptor of WEHI 231 immature B cells leads sequentially to a drop in c-Myc, to induction of the cyclin-dependent kinase inhibitor p27Kip1, and finally to apoptosis. Recently we demonstrated that the drop in c-Myc expression promotes cell death, whereas the induction of p27 has been shown to lead to growth arrest. In this paper, we demonstrate that increased p27 expression also promotes apoptosis of WEHI 231 B cells. The rescue of WEHI 231 cells by CD40 ligand engagement of its receptor prevented the increase in p27 induction. Inhibition of p27-ablated apoptosis induced upon expression of antisense c-myc RNA. Furthermore, specific induction of p27 gene expression resulted in apoptosis of WEHI 231 cells. Lastly, inhibition of expression of c-Myc, upon induction of an antisense c-myc RNA vector, was sufficient to induce increased p27 levels and apoptosis. Thus, these findings define a signaling pathway during B cell receptor engagement in which the drop in c-Myc levels leads to an increase in p27 levels that promotes apoptosis.  相似文献   

16.
17.
The biological activities of PGE(2) are mediated through EP receptors (EP(1)-EP(4)), plasma membrane G protein-coupled receptors that differ in ligand binding and signal-transduction pathways. We investigated gastrointestinal EP(2) receptor expression in adult mice before and after radiation injury and evaluated intestinal stem cell survival and crypt epithelial apoptosis after radiation injury in EP(2) null mice. EP(2) was expressed throughout the gut. Intestinal EP(2) mRNA increased fivefold after gamma-irradiation. Crypt survival was diminished in EP(2)-/- mice (4.06 crypts/cross section) compared with wild-type littermates (8.15 crypts/cross section). Radiation-induced apoptosis was significantly increased in EP(2)-/- mice compared with wild-type littermates. Apoptosis was 1.6-fold higher in EP(2) (-/-) mice (5.9 apoptotic cells/crypt) than in wild-type mice (3.5 apoptotic cells/crypt). The EP(2) receptor is expressed in mouse gastrointestinal epithelial cells and is upregulated following radiation injury. The effects of PGE(2) on both crypt epithelial apoptosis and intestinal crypt stem cell survival are mediated through the EP(2) receptor.  相似文献   

18.
B cell Ag receptor (BCR) signaling changes dramatically during B cell development, resulting in activation in mature B cells and apoptosis, receptor editing, or anergy in immature B cells. BCR signaling in mature B cells was shown to be initiated by the translocation of the BCR into cholesterol- and sphingolipid-enriched membrane microdomains that include the Src family kinase Lyn and exclude the phosphatase CD45. Subsequently the BCR is rapidly internalized into the cell. Here we show that the BCR in the immature B cell line, WEHI-231, does not translocate into lipid rafts following cross-linking nor is the BCR rapidly internalized. The immature BCR initiates signaling from outside lipid rafts as evidenced by the immediate induction of an array of phosphoproteins and subsequent apoptosis. The failure of the BCR in immature B cells to enter lipid rafts may contribute to the dramatic difference in the outcome of signaling in mature and immature B cells.  相似文献   

19.
Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.  相似文献   

20.
Prostaglandin E(2) (PGE(2)), a major metabolite of the cyclooxygenase pathway in the mammary gland, induces angiogenesis during mammary tumor progression. To better define the molecular mechanisms involved, we examined the role of the G protein-coupled receptors (GPCR) for PGE(2) in mammary tumor cell lines isolated from MMTV-cyclooxygenase-2 (COX-2) transgenic mice. Expression of the EP2 subtype of the PGE(2) receptor was correlated with the tumorigenic phenotype and the ability to induce vascular endothelial growth factor (VEGF). Overexpression of EP2 by adenoviral transduction into EP2-null cells resulted in the induction of VEGF expression in response to PGE(2) and CAY10399, an EP2 receptor agonist. The induction of VEGF by the EP2 receptor did not require the hypoxia inducible factor (HIF)-1alpha pathway, MAP kinase pathway, or phosphoinositide-3-kinase/Akt pathway, but required the cAMP/protein kinase A pathway. These results suggest that EP2 receptor is a critical element for PGE(2) mediated VEGF induction in mouse mammary tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号