首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery that takes place in a cold environment after endurance exercise elevates PGC-1α mRNA whereas ERRα and NRF2 mRNA expression are inhibited. However, the effect of local skeletal muscle cooling on mitochondrial-related gene expression is unknown.PurposeTo determine the impact of local skeletal muscle cooling during recovery from an acute bout of exercise on mitochondrial-related gene expression.MethodsRecreationally-trained male cyclists (n=8, age 25±3 y, height 181±6 cm, weight 79±8 kg, 12.8±3.6% body fat, VO2peak 4.52±0.88 L·min−1 protocol) completed a 90-min variable intensity cycling protocol followed by 4 h of recovery. During recovery, ice was applied intermittently to one leg (ICE) while the other leg served as a control (CON). Intramuscular temperature was recorded continuously. Muscle biopsies were taken from each vastus lateralis at 4 h post-exercise for the analysis of mitochondrial-related gene expression.ResultsIntramuscular temperature was colder in ICE (26.7±1.1 °C) than CON (35.5±0.1 °C) throughout the 4 h recovery period (p<0.001). There were no differences in expression of PGC-1α, TFAM, NRF1, NRF2, or ERRα mRNA between ICE and CON after the 4 h recovery period.ConclusionLocal muscle cooling after exercise does not impact the expression of mitochondrial biogenesis-related genes compared to recovery from exercise in control conditions. When these data are considered with previous research, the stimuli for cold-induced gene expression alterations may be related to factors other than local muscle temperature. Additionally, different intramuscular temperatures should be examined to determine dose-response of mitochondrial-related gene expression.  相似文献   

2.
Antioxidant vitamin C (VC) supplementation is of potential clinical benefit to individuals with skeletal muscle oxidative stress. However, there is a paucity of data reporting on the bioavailability of high-dose oral VC in human skeletal muscle. We aimed to establish the time course of accumulation of VC in skeletal muscle and plasma during high-dose VC supplementation in healthy individuals. Concurrently we investigated the effects of VC supplementation on expression levels of the key skeletal muscle VC transporter sodium-dependent vitamin C transporter 2 (SVCT2) and intramuscular redox and mitochondrial measures. Eight healthy males completed a randomized placebo-controlled, crossover trial involving supplementation with ascorbic acid (2×500 mg/day) over 42 days. Participants underwent muscle and blood sampling on days 0, 1, 7, and 42 during each treatment. VC supplementation significantly increased skeletal muscle VC concentration after 7 days, which was maintained at 42 days (VC 3.0±0.2 (mean±SEM) to 3.9±0.4 mg/100 g wet weight (ww) versus placebo 3.1±0.3 to 2.9±0.2 mg/100 g ww, p=0.001). Plasma VC increased after 1 day, which was maintained at 42 days (VC 61.0±6.1 to 111.5±10.4 µmol/L versus placebo 60.7±5.3 to 59.2±4.8 µmol/L, p<0.001). VC supplementation significantly increased skeletal muscle SVCT2 protein expression (main treatment effect p=0.006) but did not alter skeletal muscle redox measures or citrate synthase activity. A main finding of our study was that 7 days of high-dose VC supplementation was required to significantly increase skeletal muscle vitamin C concentration in healthy males. Our findings implicate regular high-dose vitamin C supplementation as a means to safely increase skeletal muscle vitamin C concentration without impairing intramuscular ascorbic acid transport, antioxidant concentrations, or citrate synthase activity.  相似文献   

3.
Cardiopulmonary and skeletal muscle effects of combined aerobic and resistance training vs. aerobic training were studied in men with coronary heart disease. Sixteen men with coronary heart disease underwent a cardiopulmonary exercise testing and a quadriceps skeletal muscle fatigue assessment. Patients were divided into two groups and trained in a combined aerobic and resistance or aerobic training group during 7 weeks. Maximal voluntary contraction and isometric endurance time were measured with electromyographic signals recorded from vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM) during isometric endurance time. Exercise tolerance increased only in the combined group (p < 0.05). Maximal voluntary contraction and isometric endurance time did not change after training in either group but was performed at 5.8% higher force output for the combined group. After training, median frequency values were higher for the VL and VM (p < 0.001) in the aerobic group and also higher for the VL, RF (p < 0.001) and VM (p < 0.05) in the combined group. Combined aerobic and resistance training was more effective to improve exercise tolerance, decrease skeletal muscle fatigue and correct neuromuscular alterations in men with coronary heart disease.  相似文献   

4.
5.
《Cytokine》2014,65(2):134-137
The purpose of this study was to identify the influence of vitamin D status (insufficient vs. sufficient) on circulating cytokines and skeletal muscle strength after muscular injury. To induce muscular injury, one randomly selected leg (SSC) performed exercise consisting of repetitive eccentric–concentric contractions. The other leg served as the control. An averaged serum 25(OH)D concentration from two blood samples collected before exercise and on separate occasions was used to establish vitamin D insufficiency (<30 ng/mL, n = 6) and sufficiency (>30 ng/mL, n = 7) in young, adult males. Serum cytokine concentrations, single-leg peak isometric force, and single-leg peak power output were measured before and during the days following the exercise protocol. The serum IL-10 and IL-13 responses to muscular injury were significantly (both p < 0.05) increased in the vitamin D sufficient group. The immediate and persistent (days) peak isometric force (p < 0.05) and peak power output (p < 0.05) deficits in the SSC leg after the exercise protocol were not ameliorated with vitamin D sufficiency. We conclude that vitamin D sufficiency increases the anti-inflammatory cytokine response to muscular injury.  相似文献   

6.
Due to the important interactions of proenkephalin fragments (e.g., proenkephalin [107–140] Peptide F) to enhance activation of immune cells and potentially combat pain associated with exercise-induced muscle tissue damage, we examined the differential plasma responses of Peptide F to different exercise training programs. Participants were tested pre-training (T1), and after 8 weeks (T2) of training. Fifty-nine healthy women were matched and then randomly assigned to one of four groups: heavy resistance strength training (STR, n = 18), high intensity endurance training (END, n = 14), combined strength and endurance training (CMB, n = 17), or control (CON, n = 10). Blood was collected using a cannula inserted into a superficial vein in the antecubital fossa with samples collected at rest and immediately after an acute bout of 6 X 10 RM in a squat resistance exercise before training and after training. Prior to any training, no significant differences were observed for any of the groups before or after acute exercise. With training, significant (P  0.95) elevations were observed with acute exercise in each of the exercise training groups and this effect was significantly greater in the CMB group. These data indicate that in untrained women exercise training will not change resting of plasma Peptide F concentrations unless both forms of exercise are performed but will result in significant increases in the immediate post-exercise responses. Such findings appear to indicate adrenal medullary adaptations opioid production significantly altered with exercise training.  相似文献   

7.
《Cytokine》2015,75(2):279-286
The purpose of this investigation was to identify if supplemental vitamin E (consisting of α- and γ-tocopherol’s) and C modulate serum cytokine and muscle strength following an ACL injury and surgery. Subjects were randomly assigned to one of two groups: (1) placebo (n = 14) or (2) vitamins E (α-[600 mg RRR-α-tocopherol, αT] and γ-[600 mg of RRR-γT]) and C (1000 mg ascorbic acid, AA) (EC; n = 15). Supplements were taken daily starting ∼2-wk prior to and concluding 16-wk after surgery. Fasting blood samples were obtained and single-leg peak isometric force measurements were performed at baseline (prior to supplementation), before surgery (∼120-min – blood draw only), and 8-wk, 12-wk, and 16-wk after surgery. αT, γT, AA, and cytokines were measured in each blood sample, and peak isometric force was measured on the injured and non-injured legs separately at each testing session. An exercise protocol consisting of repetitive knee and hip extension and flexion contractions to exhaustion was performed on the injured limb at 16-wk. Vitamin E and C supplementation significantly (all p < 0.05) increased plasma αT (∼40%), γT (∼160%), and AA (∼50%) concentrations. Serum cytokine concentrations, peak isometric force, and time to exhaustion during the exercise protocol were not significantly different between groups. Based on these findings, we conclude that vitamin E and C supplementation increases their endogenous levels without minimizing muscular weakness or modulating serum cytokine concentrations after ACL surgery.  相似文献   

8.
PurposeThis study investigated the effects of a combined endurance and strength training on the physiological and neuromuscular parameters during a 2-h cycling test.MethodsFourteen triathletes were assigned to an endurance-strength training group and an endurance-only training group. They performed three experimental trials before and after training: an incremental cycling test to exhaustion, a maximal concentric lower-limbs strength measurement and a 2-h cycling exercise. Physiological parameters, free cycling chosen cadence and the EMG of Vastus Lateralis (VL) and Rectus Femoris (RF) were analysed during the 2-h cycling task before and after a strength training programme of 5 weeks (three times per week).ResultsThe results showed that the maximum strength and the isometric maximal voluntary contraction (isoMVC) after training were significantly higher (P < 0.01) and lower (P < 0.01) than those before training, respectively, in endurance-strength training group and endurance-only group. The physiological variables measured during the cycling tests and the progressive increase (P < 0.01) in EMGi(VL) and EMGi(RF) throughout the 2-h cycling test did not differ between the two groups before and after training, except for the variation of EMGi(VL) over the cycle time which was stabilized during the second hour of the 2-h cycling test due to training in endurance-strength training group. The decrease in free cycling chosen cadence observed in pre-training (P < 0.01) was also replaced by a steady free cycling chosen cadence for the endurance-strength training group during the second hour of exercise.ConclusionThis study confirmed the decrease in the free cycling chosen cadence with exercise duration and demonstrated that a specific combined endurance and strength training can prevent this decrease during a 2-h constant cycling exercise.  相似文献   

9.
We investigated the effect of ageing and training on muscle fibre conduction velocity (MFCV) and cardiorespiratory response during incremental cycling exercise. Eight young (YT; 24 ± 5 yrs) and eight older (OT; 64 ± 3 yrs) cyclists, together with eight young (YU; 27 ± 4 yrs) and eight older (OU; 63 ± 2 yrs) untrained individuals underwent to an incremental maximal test on a cycle ergometer. Ventilatory threshold (VT), respiratory compensation point (RCP) and maximal oxygen uptake (VO2max) were identified and MFCV recorded from the vastus lateralis muscle using surface electromyography with linear arrays electrodes.In YT MFCV increased with the exercise intensity, reaching a peak of 4.99 ± 1.02 [m/s] at VT. Thereafter, and up to VO2max, MFCV declined. In YU MFCV showed a similar trend although the peak [4.55 ± 0.53 m/s] was observed, at 75% of VO2max an intensity higher than VT (66% of VO2max). In both YT and YU MFCV did not decline until RPC, which occurred at 78% VO2max in YU and at 92% VO2max (P < 0.01) in YT. Differently from young individuals, MFCV in older subjects did not increase with exercise intensity. Moreover, maximal MFCV in OU was significantly lower [3.53 ± 0.40 m/s;] than that of YT (P < 0.005) and YU (P < 0.05).The present study shows that, especially in young individuals, MFCV reflects cardiorespiratory response during incremental dynamic cyclic exercise and hence can be used to investigate motor unit recruitment strategies.  相似文献   

10.
ObjectiveTo assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults.Materials and methodsA total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers.ResultsInverse correlations were found between muscle strength and adiposity (r = -.317; P = .001), waist circumference (r = -.309; P = .001), systolic blood pressure (r = -.401; P = .001), and mean arterial pressure (r = -.256; P = .001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P = .008) risk of having higher adiposity levels (≥ 25%) and a 9.67-fold (95% CI = 3.86 to 19.22; P < .001) risk of having lower physical capacity values for VO2max (≤ 31.5 mL/kg/min-1).ConclusionsIn sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk.  相似文献   

11.
Using sled dogs as exercise model, our objectives of this study were to (1) assess the effects of one acute bout of high-intensity exercise on surface GLUT4 concentrations on easily accessible peripheral blood mononuclear cells (PBMC) and (2) compare our findings with published research on exercise induced GLUT4 in skeletal muscle. During the exercise bout, dogs ran 5 miles at approximately 90% of VO2 max. PMBC were collected before exercise (baseline), immediately after exercise and after 24 h recovery.GLUT4 was measured via ELISA. Acute exercise resulted in a significant increase on surface GLUT4 content on PBMC. GLUT4 was increased significantly immediately after exercise (~50%; p<0.05) and reduced slightly by 24 h post-exercise as compared to baseline (~22%; p>0.05). An effect of acute exercise on GLUT4 levels translocated to the cell membrane was observed, with GLUT4 levels not yet returned to baseline after 24 h post-exercise. In conclusion, the present investigation demonstrated that acute high-intensity exercise increased GLUT4 content at the surface of PBMC of sled dogs as it has been reported in skeletal muscle in other species. Our findings underline the potential use of peripheral blood mononuclear cell GLUT4 protein content as minimally invasive proxy to investigate relationships between insulin sensitivity, insulin resistance, GLUT4 expression and glucose metabolism.  相似文献   

12.
《Endocrine practice》2014,20(6):566-570
ObjectiveThis study examines the association of fitness on glycemic variability (GV) in adolescents with type 1 diabetes mellitus (T1DM). GV has been associated with high frequency of hyper-and hypoglycemia.MethodsNineteen adolescents with T1DM, ages 14 to 19 years, underwent aerobic fitness testing to determine their maximal aerobic capacity (VO2 max). A continuous glucose monitoring (CGM) device was placed on each subject and worn for 3 to 5 days until a return visit when the subjects underwent a 1-hour treadmill exercise session. Mean amplitude of glycemic excursion (MAGE) was calculated from the CGM data collected between the 2 study visits. Metabolic equivalent (MET), a measure of accumulated metabolic workload during the exercise session, was also calculated.ResultsMean VO2 max was 46.6 ± 6.8 mL/kg/min, with a range of 34.8 to 57.0 mL/kg/min. Mean MET during the exercise session was 577.2 ± 102.4 and ranged from 354.3 to 716.2 METs. There was an inverse association between VO2 max and MAGE (r = − 0.46; 95% confidence interval [CI], − 0.01 to − 0.76; P = .048). MET load and MAGE also had an inverse relationship (r = − 0.48; 95% CI, − 0.03 to − 0.77; P = .037).ConclusionGV is inversely associated with fitness and MET load. Aerobic fitness should be promoted in adolescents with T1DM not only because of its multiple beneficial effects but also due to a possible association with GV, leading to fewer extremes in hypo-and hyperglycemia. (Endocr Pract. 2014;20:566-570)  相似文献   

13.
Mitochondrial background has been demonstrated to influence maximal oxygen uptake (VO2max, in mL kg?1 min?1), but this genetic influence can be compensated for by regular exercise. A positive correlation among electron transport chain (ETC) coupling, ATP and reactive oxygen species (ROS) production has been established, and mitochondrial variants have been reported to show differences in their ETC performance. In this study, we examined in detail the VO2max differences found among mitochondrial haplogroups. We recruited 81 healthy male Spanish Caucasian individuals and determined their mitochondrial haplogroup. Their VO2max was determined using incremental cycling exercise (ICE). VO2max was lower in J than in non-J haplogroup individuals (P = 0.04). The H haplogroup was responsible for this difference (VO2max; J vs. H; P = 0.008) and this group also had significantly higher mitochondrial oxidative damage (mtOD) than the J haplogroup (P = 0.04). In agreement with these results, VO2max and mtOD were positively correlated (P = 0.01). Given that ROS production is the major contributor to mtOD and consumes four times more oxygen per electron than the ETC, our results strongly suggest that ROS production is responsible for the higher VO2max found in the H variant. These findings not only contribute to a better understanding of the mechanisms underneath VO2max, but also help to explain some reported associations between mitochondrial haplogroups and mtOD with longevity, sperm motility, premature aging and susceptibility to different pathologies.  相似文献   

14.
The purpose of this study was to assess the effect of relative exercise intensity on various plasma trace elements in euhydrated endurance athletes.Twenty-seven well-trained endurance athletes performed a cycloergometer test: after a warm-up of 10 min at 2.0 W kg−1, workload increased by 0.5 W kg−1 every 10 min until exhaustion. Oxygen uptake, blood lactate concentration ([La]b), and plasma ions (Zn, Se, Mn and Co) were measured at rest, at the end of each stage, and 3, 5 and 7 min post-exercise. Urine specific gravity (USG) was measured before and after the test, and subjects drank water ad libitum. Fat oxidation (FATOXR), carbohydrate oxidation (CHOOXR), energy expenditure from fat (EEFAT), from carbohydrates (EECHO) and total EE (EET) were estimated using stoichiometric equations. A repeated measure (ANOVA) was used to compare plasma ion levels at each exercise intensity level. The significance level was set at P < 0.05.No significant differences were found in USG between, before, and after the test (1.014 ± 0.004 vs. 1.014 ± 0.004 g cm−3) or in any plasma ion level as a function of intensity. There were weak significant correlations of Zn (r = 0.332, P < 0.001) and Se (r = 0.242, P < 0.01) with [La]b, but no relationships were established between [La]b, VO2, FATOXR, CHOOXR, EEFAT, EECHO, or EET and plasma ion levels.Acute exercise at different submaximal intensities in euhydrated well-trained endurance athletes does not provoke a change in plasma trace element levels, suggesting that plasma volume plays an important role in the homeostasis of these elements during exercise.  相似文献   

15.
This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0 ± 3.8 yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3 days per week, over a period of 6 weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P < 0.001), but did not change in the endurance (P = 0.875) or control group (P = 0.995). CoV of force was reduced after the strength training intervention only (P < 0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods.  相似文献   

16.
17.
Several studies suggest that exercise is associated with elevated oxidative stress which diminishes NO bioavailability. The aim of the present study was to investigate a potential link between NO synthesis and bioavailability and oxidative stress in the circulation of subjects performing high-intensive endurance exercise. Twenty-two male healthy subjects cycled at 80% of their maximal workload. Cubital venous blood was taken before, during and after exercise, and heparinized plasma was generated. Plasma concentrations of nitrite and nitrate were quantified by GC–MS and of the oxidative stress biomarker 15(S)-8-iso-PGF by GC–MS/MS. pH and pCO2 fell and HbO2 increased upon exercise. The duration of the 80% phase (d80) was 740 ± 210 s. Subjects cycled at 89.2 ± 3.3% of their peak oxygen uptake. Plasma concentration of nitrite (P < 0.01) and 15(S)-8-iso-PGF (P < 0.05) decreased significantly during exercise. At the end of exercise, plasma nitrite concentration correlated positively with d80 and performed work (w80) (each P < 0.05). Changes in nitrate concentration also correlated positively with d80 (P < 0.05) and w80/kg (P < 0.01). These findings provide evidence of a favorable effect of nitrite on high-intensive endurance exercise. The lack of association between 15(S)-8-iso-PGF and NO bioavailability (nitrite concentration) and NO biosynthesis (nitrate concentration) suggest that oxidative stress, notably lipid peroxidation, is not linked to the l-arginine/NO pathway in healthy male subjects being on endurance exercise.  相似文献   

18.
ObjectiveTo demonstrate the hypothesis that aerobic exercise training inhibits the development of insulin resistance through IL-6 and probe into the possible molecular mechanism about it.MethodsRats were raised with high-fat diets for 8 weeks to develop insulin resistance, and glucose infusion rates (GIRs) were determined by hyperinsulinemic–euglycemic clamping to confirm the development of insulin resistance. Aerobic exercise training (the speed and duration time in the first week were respectively 16 m/min and 50 min, and speed increased 1 m/min and duration time increased 5 min every week following it) and/or IL-6shRNA plasmid injection (rats received IL-6shRNA injection via the tail vein every two weeks) were adopted during the development of insulin resistance. The serum IL-6, leptin, adiponectin, fasting blood glucose, fasting serum insulin, GIR, IL-6 gene expression levels, p-p38 in various tissues and p-STAT3/t-STAT3 ratio in the liver were measured.ResultsRats fed with high-fat diets for 8 weeks were developed insulin resistance and the IL-6mRNA levels of IL-6shRNA injection groups in various tissues were significantly lower than those of control group (P < 0.05), respectively. The development of insulin resistance in exercise rats significantly decreased, however, compared with that, the GIR of exercise rats injected by IL-6shRNA was lower (P < 0.05). The IL-6mRNA levels were highest in the fat tissue and lowest in the skeletal muscles in all the rats. The serum adiponectin levels decreased (P < 0.05) following the development of insulin resistance, and it increased (P < 0.05) when the rats were intervened by aerobic exercise training for 8 weeks at the same time. However, there were not significant differences when serum leptin concentrations were compared (P > 0.05). The p-p38 significantly increased in the rats fed with high-fat diets, however, p-p38 of the exercise high-fat diets rats in the liver and fat tissues significantly decreased than that (P < 0.05). The changes of p-p38 in exercise rats injected by IL-6shRNA were irregular. The activation of STAT3 in the liver significantly increased (P < 0.05) following the development of insulin resistance, and it decreased (P < 0.05) when the rats were intervened by aerobic exercise training for 8 weeks at the same time, and the gene silencing of IL-6 did not have effects on the activation of STAT3 in the liver (P > 0.05).ConclusionsIn conclusion, aerobic exercise training prevented the development of insulin resistance through IL-6 to a certain degree. The gene expression and secretion of IL-6 could inhibit the development of insulin resistance. The mechanism of the effects were possibly related with elevating the levels of serum adiponectin, and/or inhibiting the activation of STAT3 in the liver and p38MAPK in the skeletal muscles, liver and fat tissues.  相似文献   

19.
This study primarily investigated the effects of intermittent cold exposure (ICE) on oxidative stress (OS) in the hippocampus(HC) and plasma lipid profile of old male rats. Secondly, it evaluated structural changes in the hippocampus region of the rat’s brain. Thirdly, it attempted an evaluation of the effectiveness of the combined supplement of vitamins C and E in alleviating cold stress in terms of these biochemical parameters. Thirty male rats aged 24 months were divided into groups of five each: control (CON), cold-exposed at 10 °C (C10), cold-exposed at 5 °C (C5), supplemented control (CON+S), and supplemented cold-exposed at either 5 °C (C5+S) or 10 °C (C10+S). The rats were on a daily supplement of vitamin C and vitamin E. Cold exposure lasted 2 h/day for 4 weeks. Rats showed increased levels of hydrogen peroxide (H2O2), and thiobarbituric acid reactive substances (TBARS) in the HC at 10 °C with further increase at 5 °C. Cold also induced neuronal loss in the hippocampus with concomitant elevations in total cholesterol (TCH), triglycerides (TG) and low-density lipoproteins (LDL-C) levels, and a depletion in high-density lipoprotein (HDL-C). A notable feature was the hyperglycaemic effects of ICE and depleted levels of vitamins C and E in the hippocampus and plasma while supplementation increased their levels. More importantly, a positive correlation was observed between plasmatic LDL-C, TCH and TG and hippocampal TBARS and H2O2 levels. Further, intensity of cold emerged as a significant factor impacting the responses to vitamin C and E supplementation. These results suggest that cold-induced changes in the plasma lipid profile correlate with OS in the hippocampus, and that vitamin C and E together are effective in protecting from metabolic and possible cognitive consequences in the old under cold exposures.  相似文献   

20.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease characterized by progressive weakness and atrophy of specific skeletal muscles. As growing evidence suggests that oxidative stress may contribute to FSHD pathology, antioxidants that might modulate or delay oxidative insults could help in maintaining FSHD muscle function. Our primary objective was to test whether oral administration of vitamin C, vitamin E, zinc gluconate, and selenomethionine could improve the physical performance of patients with FSHD. Adult patients with FSHD (n=53) were enrolled at Montpellier University Hospital (France) in a randomized, double-blind, placebo-controlled pilot clinical trial. Patients were randomly assigned to receive 500 mg vitamin C, 400 mg vitamin E, 25 mg zinc gluconate and 200 μg selenomethionine (n=26), or matching placebo (n=27) once a day for 17 weeks. Primary outcomes were changes in the two-minute walking test (2-MWT), maximal voluntary contraction, and endurance limit time of the dominant and nondominant quadriceps (MVCQD, MVCQND, TlimQD, and TlimQND, respectively) after 17 weeks of treatment. Secondary outcomes were changes in the antioxidant status and oxidative stress markers. Although 2-MWT, MVCQ, and TlimQ were all significantly improved in the supplemented group at the end of the treatment compared to baseline, only MVCQ and TlimQ variations were significantly different between groups (MVCQD: P=0.011; MVCQND: P=0.004; TlimQD: P=0.028; TlimQND: P=0.011). Similarly, the vitamin C (P<0.001), vitamin E as α-tocopherol (P<0.001), vitamin C/vitamin E ratio (P=0.017), vitamin E γ/α ratio (P=0.022) and lipid peroxides (P<0.001) variations were significantly different between groups. In conclusion, vitamin E, vitamin C, zinc, and selenium supplementation has no significant effect on the 2-MWT, but improves MVCQ and TlimQ of both quadriceps by enhancing the antioxidant defenses and reducing oxidative stress. This trial was registered at clinicaltrials.gov (number: NCT01596803).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号