首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Two methods are given for measuring the rate of diffusion of CO2 in tissue membranes. Methods are also given for the determination of tissue thickness and the absorption coefficient for CO2 in tissues. 2. The values obtained for the permeability constant (P x 104) at 22°C. for CO2 in the following tissues are:—frog skin, 3.05; connective tissue (dog), 2.65; smooth muscle (cat), 5.00; frog muscle, 5.29; striated muscle (dog), 4.70. P is expressed as cc. per cm.2 per minute under a pressure gradient of one atmosphere per cm. 3. Evidence is presented to show that in a "steady state" bicarbonate contributes a negligible amount to the diffusion of CO2. 4. The absorption coefficient for CO2 in frog skin is 0.73 cc. per cc. and for frog muscle 0.78 cc. per cc. 5. In all of the tissues studied the diffusion of CO2 is slower than in water. The diffusion coefficients (K x 104 in cm.2/minute) at 22°C. for tissues as compared with water are:—water (16°C.), 9.5 (Hüfner, 1897); frog skin, 4.1; connective tissue, 3.7; frog muscle, 6.8; striated muscle (dog), 6.0; smooth muscle (cat), 6.4. 6. The time course of saturation of a tissue with CO2 is altered in the presence of available base. Non-acidified tissues saturate more slowly than acidified tissues and the rate of saturation is dependent on the CO2 tension.  相似文献   

2.

Purpose

To examine quadriceps muscle fatigue and central motor output during fatiguing single joint exercise at 40% and 80% maximal torque output in resistance trained men.

Method

Ten resistance trained men performed fatiguing isometric knee extensor exercise at 40% and 80% of maximal torque output. Maximal torque, rate of torque development, and measures of central motor output and peripheral muscle fatigue were recorded at two matched volumes of exercise, and after a final contraction performed to exhaustion. Central motor output was quantified from changes in voluntary activation, normalized surface electromyograms (EMG), and V-waves. Quadriceps muscle fatigue was assessed from changes in the size and shape of the resting potentiated twitch (Q.pot.tw). Central motor output during the exercise protocols was estimated from EMG and interpolated twitches applied during the task (VAsub).

Results

Greater reductions in maximal torque and rate of torque development were observed during the 40% protocol (p<0.05). Maximal central motor output did not change for either protocol. For the 40% protocol reductions from pre-exercise in rate and amplitude variables calculated from the Q.pot.tw between 66.2 to 70.8% (p<0.001) exceeded those observed during the 80% protocol (p<0.01). V-waves only declined during the 80% protocol between 56.8 ± 35.8% to 53.6 ± 37.4% (p<0.05). At the end of the final 80% contraction VAsub had increased from 91.2 ± 6.2% to 94.9 ± 4.7% (p = 0.005), but a greater increase was observed during the 40% contraction where VAsub had increased from 67.1 ± 6.1% to 88.9 ± 9.6% (p<0.001).

Conclusion

Maximal central motor output in resistance trained men is well preserved despite varying levels of peripheral muscle fatigue. Upregulated central motor output during the 40% contraction protocol appeared to elicit greater peripheral fatigue. V-waves declines during the 80% protocol suggest intensity dependent modulation of the Ia afferent pathway.  相似文献   

3.
To evaluate the effects of inspiratory loading on blood flow of resting and exercising limbs in patients with diabetic autonomic neuropathy. Ten diabetic patients without cardiovascular autonomic neuropathy (DM), 10 patients with cardiovascular autonomic neuropathy (DM-CAN) and 10 healthy controls (C) were randomly assigned to inspiratory muscle load of 60% or 2% of maximal inspiratory pressure (PImax) for approximately 5 min, while resting calf blood flow (CBF) and exercising forearm blood flow (FBF) were measured. Reactive hyperemia was also evaluated. From the 20 diabetic patients initially allocated, 6 wore a continuous glucose monitoring system to evaluate the glucose levels during these two sessions (2%, placebo or 60%, inspiratory muscle metaboreflex). Mean age was 58 ± 8 years, and mean HbA1c, 7.8% (62 mmol/mol) (DM and DM-CAN). A PImax of 60% caused reduction of CBF in DM-CAN and DM (P<0.001), but not in C, whereas calf vascular resistance (CVR) increased in DM-CAN and DM (P<0.001), but not in C. The increase in FBF during forearm exercise was blunted during 60% of PImax in DM-CAN and DM, and augmented in C (P<0.001). Glucose levels decreased by 40 ± 18.8% (P<0.001) at 60%, but not at 2%, of PImax. A negative correlation was observed between reactive hyperemia and changes in CVR (Beta coefficient = -0.44, P = 0.034). Inspiratory muscle loading caused an exacerbation of the inspiratory muscle metaboreflex in patients with diabetes, regardless of the presence of neuropathy, but influenced by endothelial dysfunction. High-intensity exercise that recruits the diaphragm can abruptly reduce glucose levels.  相似文献   

4.
The main purpose of this study was to directly quantify the relative contribution of Ca2+ cycling to resting metabolic rate in mouse fast (extensor digitorum longus, EDL) and slow (soleus) twitch skeletal muscle. Resting oxygen consumption of isolated muscles (VO2, µL/g wet weight/s) measured polarographically at 30°C was ~20% higher (P<0.05) in soleus (0.326 ± 0.022) than in EDL (0.261 ± 0.020). In order to quantify the specific contribution of Ca2+ cycling to resting metabolic rate, the concentration of MgCl2 in the bath was increased to 10 mM to block Ca2+ release through the ryanodine receptor, thus eliminating a major source of Ca2+ leak from the sarcoplasmic reticulum (SR), and thereby indirectly inhibiting the activity of the sarco(endo) plasmic reticulum Ca2+-ATPases (SERCAs). The relative (%) reduction in muscle VO2 in response to 10 mM MgCl2 was similar between soleus (48.0±3.7) and EDL (42.4±3.2). Using a different approach, we attempted to directly inhibit SERCA ATPase activity in stretched EDL and soleus muscles (1.42x optimum length) using the specific SERCA inhibitor cyclopiazonic acid (CPA, up to 160 µM), but were unsuccessful in removing the energetic cost of Ca2+ cycling in resting isolated muscles. The results of the MgCl2 experiments indicate that ATP consumption by SERCAs is responsible for 40–50% of resting metabolic rate in both mouse fast- and slow-twitch muscles at 30°C, or 12–15% of whole body resting VO2. Thus, SERCA pumps in skeletal muscle could represent an important control point for energy balance regulation and a potential target for metabolic alterations to oppose obesity.  相似文献   

5.
Two sets of iso-1-cytochrome c variants have been prepared with N-terminal insertions of pure polyglutamine, i.e., PolyQ variants, or polyglutamine interrupted with lysine every sixth residue, i.e., Gln-rich variants. The polymer properties of these pure polyGln or Gln-rich sequences have been evaluated using equilibrium and kinetic His-heme loop formation methods for loop sizes ranging from 22 to 46 in 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). In 6.0 M GdnHCl, the scaling exponent, ν3, for the pure polyGln sequences, is ∼1.7—significantly less than ν3 ≈ 2.15 for the Gln-rich sequences. The stability of the His-heme loops becomes progressively greater for the pure polyGln sequences relative to the Gln-rich sequences as GdnHCl concentration decreases from 6.0 to 1.5 M. Thus, the context of the sequence effects the polymer properties of Gln repeats even in denaturing concentrations of GdnHCl. Comparison of data for the Gln-rich variants with previous results for Gly-rich and Ala-rich variants shows that ν3 ∼ 2.2 for the Gln-rich, Gly-rich, and Ala-rich sequences in 6.0 M GdnHCl, whereas ν3 remains unchanged at 3.0 M GdnHCl concentration for the Gln-rich and Ala-rich sequences but decreases to ∼1.7 for the Gly-rich sequences. Thus, the polymer properties of Gln-rich and Ala-rich sequences are less sensitive to solvent quality in denaturing solutions of GdnHCl than Gly-rich sequences. Evaluation of Flory’s characteristic ratio, Cn, for the Gln-rich and Ala-rich sequences relative to the Gly-rich sequences shows that Gln-rich sequences are stiffer than Ala-rich sequences at both 3.0 and 6.0 M GdnHCl.  相似文献   

6.
Aging appears to attenuate leg blood flow during exercise; in contrast, such data are scant and do not support this contention in the arm. Therefore, to determine whether aging has differing effects on blood flow in the arm and leg, eight young (22 +/- 6 yr) and six old (71 +/- 15 yr) subjects separately performed dynamic knee extensor [0, 3, 6, 9 W; 20, 40, 60% maximal work rate (WRmax)] and handgrip exercise (3, 6, 9 kg at 0.5 Hz; 20, 40, 60% WRmax). Arterial diameter, blood velocity (Doppler ultrasound), and arterial blood pressure (radial tonometry) were measured simultaneously at each of the submaximal workloads. Quadriceps muscle mass was smaller in the old (1.6 +/- 0.1 kg) than the young (2.1 +/- 0.2 kg). When normalized for this difference in muscle mass, resting seated blood flow was similar in young and old subjects (young, 115 +/- 28; old, 114 +/- 39 ml x g(-1) x min(-1)). During exercise, blood flow and vascular conductance were attenuated in the old whether expressed in absolute terms for a given absolute workload or more appropriately expressed as blood flow per unit muscle mass at a given relative exercise intensity (young, 1,523 +/- 329; old, 1,340 +/- 157 ml x kg(-1) x min(-1) at 40% WRmax). In contrast, aging did not affect forearm muscle mass or attenuate rest or exercise blood flow or vascular conductance in the arm. In conclusion, aging induces limb-specific alterations in exercise blood flow regulation. These alterations result in reductions in leg blood flow during exercise but do not impact forearm blood flow.  相似文献   

7.
We studied the effects of a hypocaloric diet (D, n = 24, age: 32.2 +/- 1.4 yr, body mass index: 34.7 +/- 0.5 kg/m2) and a hypocaloric diet associated with exercise training (D + T, n = 25, age: 32.3 +/- 1.3 yr, body mass index: 32.9 +/- 0.4 kg/m2) on muscle metaboreflex control, muscle sympathetic nerve activity (MSNA, microneurography), blood pressure, and forearm blood flow (plethysmography) levels during handgrip exercise at 10% and 30% of maximal voluntary contraction in normotensive obese women. An additional 10 women matched by age and body mass index were studied as a nonadherent group. D or D + T significantly decreased body mass index. D or D + T significantly decreased resting MSNA (bursts/100 heartbeats). The absolute levels of MSNA were significantly lower throughout 10% and 30% exercise after D or D + T, although no change was found in the magnitude of response of MSNA. D + T, but not D, significantly increased resting forearm vascular conductance. D + T significantly increased the magnitude of the response of forearm vascular conductance during 30% exercise. D or D + T significantly increased MSNA levels during posthandgrip circulatory arrest when muscle metaboreflex is isolated. In conclusion, weight loss improves muscle metaboreflex control in obese women. Weight loss reduces MSNA, which seems to be centrally mediated. Weight loss by D + T increases forearm vascular conductance at rest and during exercise in obese individuals.  相似文献   

8.
Continuous wave nuclear magnetic resonance (NMR) studies indicated that the line width of the water absorption peak (Δv½) from crowns of winter and spring wheat (Triticum aestivum L.) increased during cold acclimation. There was a negative correlation between Δv½ and crown water content, and both of these parameters were correlated with the lowest survival temperature at which 50% or more of the crowns were not killed by freezing (LT50). Regression analyses indicated that Δv½ and water content account for similar variability in LT50. Slow dehydration of unacclimated winter wheat crowns by artificial means resulted in similarly correlated changes in water content and Δv½. Rapid dehydration of unacclimated crowns reduced water content but did not influence Δv½. The incubation of unacclimated winter wheat crowns in a sucrose medium reduced water content and increased Δv½. The increase in Δv½ appears to be dependent in part on a reduction in water content and an increase in solutes.  相似文献   

9.
The individual muscle fibers of the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. are uninucleate, 1.2–1.8 mm in length, 5 µm in diameter, and organized into bundles 100–200 µm in diameter, surrounded by connective tissue. Some bundles run the length of the whole muscle. Adjacent muscle cell membranes are interconnected by nexuses at frequent intervals. Specialized attachments exist between muscle fibers and connective tissue. Electrical constants of the resting muscle membrane were measured with intracellular recording electrodes and both extracellular and intracellular current-passing electrodes. With an intracellular current-passing electrode, the time constant τ, was 4.3 ± 1.5 ms. With current delivered via an extracellular electrode τ was 68.3 ± 15 ms. The space constant, λ, was 1.8 mm ± 0.4. The membrane input resistance, Reff, ranged from 23 to 51 MΩ. The observations that values of τ depend on the method of passing current, and that the value of λ is large relative to fiber length and diameter are considered evidence that the individual muscle fibers are electrically interconnected within bundles in a three-dimensional network. Estimations are made of the membrane resistance, Rm, to compare the values to fast and slow striated muscle fibers and mammalian smooth muscles. The implications of this study in reinterpreting previous mechanical and electrical studies are discussed.  相似文献   

10.
The objectives of this study were (1) to characterize the changes in oxygenation derived from muscle near-infrared spectroscopy (NIRS) during aerobic constant-load exercise with intensities close to Maximal Lactate Steady-State (MLSS) and (2) to establish reference values in the world-class rowers, for such workload often included in rowing training programs. Eight senior world-class rowers performed an incremental progressive submaximal exercise test and a 30-minute test on a rowing ergometer. The power corresponding to intensive aerobic training (84±1% of the anaerobic threshold) was adopted as an exercise load in the 30-minute test. The NIRS device was fixed on the vastus lateralis muscle which was active during rowing to record muscle O2 saturation (SmO2) and total hemoglobin concentration (THb) at rest and during exercise. Statistically significant increments in blood lactate (LA) and heart rate (HR) were observed, with 1.18±0.61 mmol/l and 10±5 beats/min, respectively, in 30th minute compared to 10th minute in 30-minute test. SmO2 decreased significantly by 2.9±1.4%, whereas THb did not change. The examinations may suggested the low diagnostic value of THb in constant-load exercise. In each subject, SmO2 was gradually reduced during the intense aerobic exercise. During workload close to MLSS, the SmO2 of the vastus lateralis ranged from 14.0±3.13 to 11.1±2.81% in 10 and 30 minutes respectively, with a reduction in muscle oxygenation (ΔSmO2) exceeding 50%. The non-invasive nature of the NIRS measurement and the continuous monitoring of SmO2 values are useful in the practice of monitoring training in terms of aerobic training loads.  相似文献   

11.
Changes in the expression of γ-aminobutyric acid type A (GABAA) receptors can either drive or mediate homeostatic alterations in neuronal excitability. A homeostatic relationship between α5 subunit-containing GABAA (α5GABAA) receptors that generate a tonic inhibitory conductance, and HCN channels that generate a hyperpolarization-activated cation current (Ih) was recently described for cortical neurons, where a reduction in Ih was accompanied by a reciprocal increase in the expression of α5GABAA receptors resulting in the preservation of dendritosomatic synaptic function. Here, we report that in mice that lack the α5 subunit gene (Gabra5−/−), cultured embryonic hippocampal pyramidal neurons and ex vivo CA1 hippocampal neurons unexpectedly exhibited a decrease in Ih current density (by 40% and 28%, respectively), compared with neurons from wild-type (WT) mice. The resting membrane potential and membrane hyperpolarization induced by blockade of Ih with ZD-7288 were similar in cultured WT and Gabra5−/− neurons. In contrast, membrane hyperpolarization measured after a train of action potentials was lower in Gabra5−/− neurons than in WT neurons. Also, membrane impedance measured in response to low frequency stimulation was greater in cultured Gabra5−/− neurons. Finally, the expression of HCN1 protein that generates Ih was reduced by 41% in the hippocampus of Gabra5−/− mice. These data indicate that loss of a tonic GABAergic inhibitory conductance was followed by a compensatory reduction in Ih. The results further suggest that the maintenance of resting membrane potential is preferentially maintained in mature and immature hippocampal neurons through the homeostatic co-regulation of structurally and biophysically distinct cation and anion channels.  相似文献   

12.

Introduction

The treatment of scleroderma-related digital ulcers is challenging. The oral endothelin receptor antagonist (ERA) bosentan has been approved but it may induce liver toxicity. The objective of this study was to test whether ERAs bosentan and sitaxentan could be locally delivered using iontophoresis.

Methods

Cathodal and anodal iontophoresis of bosentan and sitaxentan were performed on anaesthetized rat hindquarters without and during endothelin-1 infusion. Skin blood flow was quantified using laser-Doppler imaging and cutaneous tolerability was assessed. Iontophoresis of sitaxentan (20 min, 20 or 100 µA) was subsequently performed on the forearm skin of healthy men (n = 5).

Results

In rats neither bosentan nor sitaxentan increased skin blood flux compared to NaCl. When simultaneously infusing endothelin-1, cathodal iontophoresis of sitaxentan increased skin blood flux compared to NaCl (AUC0–20 were 44032.2±12277 and 14957.5±23818.8 %BL.s, respectively; P = 0.01). In humans, sitaxentan did not significantly increase skin blood flux as compared to NaCl. Iontophoresis of ERAs was well tolerated both in animals and humans.

Conclusions

This study shows that cathodal iontophoresis of sitaxentan but not bosentan partially reverses endothelin-induced skin vasoconstriction in rats, suggesting that sitaxentan diffuses into the dermis. However, sitaxentan does not influence basal skin microvascular tone in rats or in humans.  相似文献   

13.
Oscillatory behavior of the squid axon membrane potential   总被引:1,自引:3,他引:1       下载免费PDF全文
Squid axons impaled with a microelectrode have been treated with concentrations of xylene and benzene such that there is no change in threshold or resting potential at 20°C., while the spike height declines about 10 mv. A decrease in ambient temperature results in large, reversible, increases in threshold. While neither low temperature nor the added blocking agent induces repetitive firing from a single stimulus, the two treatments when combined do yield repetitive responses which commence at a sharply defined temperature. The alteration in the membrane responsible for the effects observed can be described by saying that there has been a large increase in the inductance of the equivalent electric circuit, and the temperature coefficient of the apparent membrane inductance has a Q10 = 5.  相似文献   

14.

Rationale

Flight attendants who worked on commercial aircraft before the smoking ban in flights (pre-ban FAs) were exposed to high levels of secondhand smoke (SHS). We previously showed never-smoking pre-ban FAs to have reduced diffusing capacity (Dco) at rest.

Methods

To determine whether pre-ban FAs increase their Dco and pulmonary blood flow () during exercise, we administered a symptom-limited supine-posture progressively increasing cycle exercise test to determine the maximum work (watts) and oxygen uptake () achieved by FAs. After 30 min rest, we then measured Dco and at 20, 40, 60, and 80 percent of maximum observed work.

Results

The FAs with abnormal resting Dco achieved a lower level of maximum predicted work and compared to those with normal resting Dco (mean±SEM; 88.7±2.9 vs. 102.5±3.1%predicted ; p = 0.001). Exercise limitation was associated with the FAs'' FEV1 (r = 0.33; p = 0.003). The Dco increased less with exercise in those with abnormal resting Dco (mean±SEM: 1.36±0.16 vs. 1.90±0.16 ml/min/mmHg per 20% increase in predicted watts; p = 0.020), and amongst all FAs, the increase with exercise seemed to be incrementally lower in those with lower resting Dco. Exercise-induced increase in was not different in the two groups. However, the FAs with abnormal resting Dco had less augmentation of their Dco with increase in during exercise (mean±SEM: 0.93±0.06 vs. 1.47±0.09 ml/min/mmHg per L/min; p<0.0001). The Dco during exercise was inversely associated with years of exposure to SHS in those FAs with ≥10 years of pre-ban experience (r = −0.32; p = 0.032).

Conclusions

This cohort of never-smoking FAs with SHS exposure showed exercise limitation based on their resting Dco. Those with lower resting Dco had reduced pulmonary capillary recruitment. Exposure to SHS in the aircraft cabin seemed to be a predictor for lower Dco during exercise.  相似文献   

15.
Homozygosity for a premature stop codon (X) in the ACTN3 “sprinter” gene is common in humans despite the fact that it reduces muscle size, strength and power. Because of the close relationship between skeletal muscle function and cardiometabolic health we examined the influence of ACTN3 R577X polymorphism over cardiovascular and metabolic characteristics of young adults (n = 98 males, n = 102 females; 23 ± 4.2 years) from our Assessing Inherent Markers for Metabolic syndrome in the Young (AIMMY) study. Both males and females with the RR vs XX genotype achieved higher mean VO2 peak scores (47.8 ± 1.5 vs 43.2 ±1.8 ml/O2/min, p = 0.002) and exhibited higher resting systolic (115 ± 2 vs 105 ± mmHg, p = 0.027) and diastolic (69 ± 3 vs 59 ± 3 mmHg, p = 0.005) blood pressure suggesting a role for ACTN3 in the maintenance of vascular tone. We subsequently identified the expression of alpha-actinin 3 protein in pulmonary artery smooth muscle, which may explain the genotype-specific differences in cardiovascular adaptation to acute exercise. In addition, we utilized targeted serum metabolomics to distinguish between RR and XX genotypes, suggesting an additional role for the ACTN3 R577X polymorphism in human metabolism. Taken together, these results identify significant cardiometabolic effects associated with possessing one or more functional copies of the ACTN3 gene.  相似文献   

16.
31P nuclear magnetic resonance (NMR) spectra were obtained from the forearm muscles of 5 subjects before and after performing a muscle stretching (eccentric) exercise routine. Spectra collected before and immediately after exercise showed normal resting phosphorylated metabolite levels and unchanged intracellular pH (pHi). Measurements made on the day following exercise, when muscular pain was apparent, revealed an elevated inorganic phosphate level. No significant changes in other metabolites or pHi were detected. This study gives the first indication of biochemical change following a form of exercise that is associated with considerable muscle pain and damage. The findings may help in understanding pathological processes resulting in pain and damage in muscle.  相似文献   

17.
Vibrissa motoneurons in the facial nucleus innervate the intrinsic and extrinsic muscles that move the whiskers. Their intrinsic properties affect the way they process fast synaptic input from the vIRT and Bötzinger nuclei together with serotonergic neuromodulation. In response to constant current (I app) injection, vibrissa motoneurons may respond with mixed mode oscillations (MMOs), in which sub-threshold oscillations (STOs) are intermittently mixed with spikes. This study investigates the mechanisms involved in generating MMOs in vibrissa motoneurons and their function in motor control. It presents a conductance-based model that includes the M-type K+ conductance, g M, the persistent Na+ conductance, g NaP, and the cationic h conductance, g h. For g h = 0 and moderate values of g M and g NaP, the model neuron generates STOs, but not MMOs, in response to I app injection. STOs transform abruptly to tonic spiking as the current increases. In addition to STOs, MMOs are generated for g h>0 for larger values of I app; the I app range in which MMOs appear increases linearly with g h. In the MMOs regime, the firing rate increases with I app like a Devil''s staircase. Stochastic noise disrupts the temporal structure of the MMOs, but for a moderate noise level, the coefficient of variation (CV) is much less than one and varies non-monotonically with I app. Furthermore, the estimated time period between voltage peaks, based on Bernoulli process statistics, is much higher in the MMOs regime than in the tonic regime. These two phenomena do not appear when moderate noise generates MMOs without an intrinsic MMO mechanism. Therefore, and since STOs do not appear in spinal motoneurons, the analysis can be used to differentiate different MMOs mechanisms. MMO firing activity in vibrissa motoneurons suggests a scenario in which moderate periodic inputs from the vIRT and Bötzinger nuclei control whisking frequency, whereas serotonergic neuromodulation controls whisking amplitude.  相似文献   

18.
This study compared resting and exercise heat/hypoxic stress-induced levels of plasma extracellular heat shock protein 70 (eHSP70) in humans using two commercially available enzyme-linked immunosorbent assay (ELIS)A kits. EDTA plasma samples were collected from 21 males during two separate investigations. Participants in part A completed a 60-min treadmill run in the heat (HOT70; 33.0 ± 0.1 °C, 28.7 ± 0.8 %, n = 6) at 70 % V̇O2max. Participants in part B completed 60 min of cycling exercise at 50 % V̇O2max in either hot (HOT50; 40.5 °C, 25.4 relative humidity (RH)%, n = 7) or hypoxic (HYP50; fraction of inspired oxygen (FIO2) = 0.14, 21 °C, 35 % RH, n = 8) conditions. Samples were collected prior to and immediately upon termination of exercise and analysed for eHSP70 using EKS-715 high-sensitivity HSP70 ELISA and new ENZ-KIT-101 Amp’d™ HSP70 high-sensitivity ELISA. ENZ-KIT was superior in detecting resting eHSP70 (1.54 ± 3.27 ng·mL−1; range 0.08 to 14.01 ng·mL−1), with concentrations obtained from 100 % of samples compared to 19 % with EKS-715 assay. The ENZ-KIT requires optimisation prior to running samples in order to ensure participants fall within the standard curve, a step not required with EKS-715. Using ENZ-KIT, a 1:4 dilution allowed for quantification of resting HSP70 in 26/32 samples, with a 1:8 (n = 3) and 1:16 (n = 3) dilution required to determine the remaining samples. After exercise, eHSP70 was detected in 6/21 and 21/21 samples using EKS-715 and ENZ-KIT, respectively. eHSP70 was increased from rest after HOT70 (p < 0.05), but not HOT50 (p > 0.05) or HYP50 (p > 0.05) when analysed using ENZ-KIT. It is recommended that future studies requiring the precise determination of resting plasma eHSP70 use the ENZ-KIT (i.e. HSP70 Amp’d® ELISA) instead of the EKS-715 assay, despite additional assay development time and cost required.  相似文献   

19.
The serum decay of rat serum high-density lipoprotein (HD lipoprotein), labelled biosynthetically with 32P in the phospholipid or with 3H in the cholesteryl ester moiety, was measured in rats after partial hepatectomy or sham operation. The serum decay of 3H-labelled HD lipoprotein cholesteryl esters was biexponential. In sham-operated rats the t½ values for the rapid phase and the slow phase were 0.2±0.1h and 4.2±0.4h (means±s.e.m.) respectively. After removal of two-thirds of the liver the t½ value of the rapid phase did not change (0.1±0.1h), whereas the t½ value of the slow phase increased to 5.7±0.8h. Partial hepatectomy hardly changed extrahepatic tissue radioactivities, whereas the percentage of the injected dose recovered in the liver 6h after injection decreased from 34.0±1.9% before to 13.5±1.6% after partial hepatectomy. The 32P-labelled HD lipoprotein phospholipids showed a rapid monoexponential decay from serum with t½ values of 0.71±0.3h and 1.48±0.11h after sham operation or partial hepatectomy respectively. The tissue 32P radioactivities in the shamoperated rats, measured 1h after injection, were 46.0±1.7% (liver), 1.7±0.3% (adipose tissue), 3.7±1.2% (skeletal muscle) and 3.0±0.0% (erythrocytes) of the injected dose. Only the value for liver was affected by partial hepatectomy and decreased to 16.7±3.8%. In a previous publication [Van Tol, Van Gent, Van't Hooft & Vlaspolder (1978) Atherosclerosis 29, 439–448] we showed in a highly comparable experimental setting that the turnover rates of HD apolipoproteins A and C in vivo are not influenced by removal of two-thirds of the liver. From the present study it is clear that the removal rates of radioactive HD lipoprotein cholesteryl esters and HD lipoprotein phospholipids from serum in vivo are decreased by partial hepatectomy. The results indicate the possibility of partly separate metabolic pathways of HD apolipoproteins A and C, HD lipoprotein cholesteryl esters and HD lipoprotein phospholipids. The phospholipids and cholesteryl esters of HD lipoprotein are metabolized predominantly by the liver. Possible mechanisms for the hepatic uptake and metabolism of HD lipoprotein cholesteryl (esters) and phospholipids are discussed.  相似文献   

20.
The distribution of the reflex effects of isometric exercise on cutaneous vasomotor and sudomotor function is not clear. We examined the effects of isometric exercise by different muscle masses on skin blood flow (SkBF) and sweat rate (SR) in nonglabrous skin and in glabrous skin. The latter contains arteriovenous anastomoses (AVAs), which cause large fluctuations in SkBF. SkBF was measured by laser-Doppler flowmetry (LDF) and reported as cutaneous vascular conductance (CVC; LDF/mean arterial pressure). SR was measured by capacitance hygrometry. LDF and SR were measured at the sole, palm, forearm, and ventral leg during separate bouts of isometric handgrip (IHG) and isometric leg extension (ILE). CVC and its standard deviation decreased significantly during IHG and ILE in the palm and sole (P < 0.05) but not in the forearm or leg (P > 0.05). Only palmar SR increased significantly during IHG and ILE (P < 0.05). We conclude that the major reflex influences of isometric exercise on the skin include AVAs and palmar sweat glands and that this is true for both arm and leg exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号