首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

2.
The purpose of this study was to investigate knee muscle activity patterns in experienced Tai-Chi (TC) practitioners during normal walking and TC stepping. The electromyographic (EMG) activity of vastus lateralis (VL), vastus medialis (VM), bicep femoris (BF), and gastrocnemius (GS) muscles of 11 subjects (five females and six males) during the stance phase of normal walking was compared to stance phase of a TC step. Knee joint motion was also monitored by using an Optotrak motion analysis system. Raw EMG was processed by root-mean-square (RMS) technique using a time constant of 50 ms, and normalized to maximum of voluntary contraction for each muscle, referred to as normalized RMS (nRMS). Peak nRMS and co-contraction (quantified by co-contraction index) during stance phase of a gait cycle and a TC step were calculated. Paired t-tests were used to compare the difference for each muscle group peak and co-contraction pair between the tasks. The results showed that only peak values of nRMS in quadriceps and co-contraction were significantly greater in TC stepping compared to normal walking (Peak values of nRMS for VL were 26.93% for normal walking and 52.14% for TC step, p=0.001; VM are 29.12% for normal walking and 51.93% for TC stepping, p=0.028). Mean co-contraction index for VL-BF muscle pairs was 13.24+/-11.02% during TC stepping and 9.47+/-7.77% in stance phase of normal walking (p=0.023). There was no significant difference in peak values of nRMS in the other two muscles during TC stepping compared to normal walking. Preliminary EMG profiles in this study demonstrated that experienced TC practitioners used relatively higher levels of knee muscle activation patterns with greater co-contraction during TC exercise compared to normal walking.  相似文献   

3.
PurposeThe purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ).MethodsFifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.ResultsThe peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001).ConclusionThis study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.  相似文献   

4.
Previous research indicates that both the extent and timing of muscular activation at the knee can be influenced by muscle activity state, joint angle, weight-bearing status and trunk position. However, little research to date has evaluated protective neuromuscular response times and activation patterns to an imposed perturbation with the knee joint in a functional, weight-bearing stance. Hence, we designed a lower extremity perturbation device to produce a sudden, forward and either internal or external rotation moment of the trunk and femur relative to the weight-bearing tibia. Surface electromyography (EMG) recorded long latency reflex times of the medial and lateral quadriceps, hamstring and gastrocnemius muscles in 64 intercollegiate lacrosse and soccer players in response to both internal and external rotation perturbation. We found the gastrocnemius fired significantly faster that the hamstring, which in turn fired significantly faster than the quadriceps. There was also a significant difference in activation times of the medial and lateral hamstring not found for the quadriceps or gastrocnemius muscles. Our findings confirmed that reactive neuromuscular responses following this functional perturbation differ markedly from those previously reported using seated, partial weight-bearing and/or uni-planar models under relaxed conditions.  相似文献   

5.
There is a discrepancy between males and females in regards to lower extremity injury rates, particularly at the knee [Agel, J., Arendt, E.A., Bershadsky, B., 2005. Anterior cruciate ligament injury in National Collegiate Athletic Association basketball and soccer: a 13-year review. American Journal of Sports Medicine 33, (4) 524-530]. Gender differences in neuromuscular recruitment characteristics of the muscles that stabilize the knee are often implicated as a factor in this discrepancy. There is considerable research in the area of gender differences in regards to neuromuscular characteristics of the lower extremity in response to perturbation; however, most studies have been performed on the adult population only. Additionally, there is no consensus as to the gender differences that have been demonstrated. The purpose of this study was to compare muscular preactivation of selected lower extremity muscles (vastus medialis, rectus femoris, and medial/lateral hamstrings) in adolescent female basketball athletes, male basketball athletes, and female non-athletes in response to a drop landing. Subjects in the female non-athlete group recruited rectus femoris significantly slower than both the female athlete and male athlete groups (619.9=588.5>200.1ms prior to ground contact). The female non-athlete group also demonstrated a significantly slower vastus medialis compared to the female athlete group (127.1 vs 408.1ms), but not significantly slower than the male athlete group (127.1 vs 275.7ms). There were no differences between female athletes and male athletes for time to initial contraction of any muscle groups. No differences were found among the groups for medial or lateral hamstring activation. This study demonstrates that physical conditioning due to basketball participation appears to affect neuromuscular recruitment in adolescents and reveals a necessity to find alternate methods of training the hamstrings for improved neuromuscular capabilities to prevent injury.  相似文献   

6.
Lengths of muscle tendon complexes of the quadriceps femoris muscle and some of its heads, biceps femoris and gastrocnemius muscles, were measured for six limbs of human cadavers as a function of knee and hip-joint angles. Length-angle curves were fitted using second degree polynomials. Using these polynomials the relationships between knee and hip-joint angles and moment arms were calculated. The effect of changing the hip angle on the biceps femoris muscle length is much larger than that of changing the knee angle. For the rectus femoris muscle the reverse was found. The moment arm of the biceps femoris muscle was found to remain constant throughout the whole range of knee flexion as was the case for the medial part of the vastus medialis muscle. Changes in the length of the lateral part of the vastus medialis muscle as well as the medial part of the vastus lateralis muscle are very similar to those of vastus intermedius muscle to which they are adjacent, while those changes in the length of the medial part of the vastus medialis muscle and the lateral part of the vastus lateralis muscle, which are similar to each other, differ substantially from those of the vastus intermedius muscle. Application of the results to jumping showed that bi-articular rectus femoris and biceps femoris muscles, which are antagonists, both contract eccentrically early in the push off phase and concentrically in last part of this phase.  相似文献   

7.
The purpose was to compare the time to failure and muscle activation patterns for a sustained isometric submaximal contraction with the dorsiflexor muscles when the foot was restrained to a force transducer (force task) compared with supporting an equivalent inertial load and unrestrained (position task). Fifteen men and women (mean+/-SD; 21.1+/-1.4 yr) performed the force and position tasks at 20% maximal voluntary contraction force until task failure. Maximal voluntary contraction force performed before the force and position tasks was similar (333+/-71 vs. 334+/-65 N), but the time to task failure was briefer for the position task (10.0+/-6.2 vs. 21.3+/-17.8 min, P<0.05). The rate of increase in agonist root-mean-square electromyogram (EMG), EMG bursting activity, rating of perceived exertion, fluctuations in motor output, mean arterial pressure, and heart rate during the fatiguing contraction was greater for the position task. EMG activity of the vastus lateralis (lower leg stabilizer) and medial gastrocnemius (antagonist) increased more rapidly during the position task, but coactivation ratios (agonist vs. antagonist) were similar during the two tasks. Thus the difference in time to failure for the two tasks with the dorsiflexor muscles involved a greater level of neural activity and rate of motor unit recruitment during the position task, but did not involve a difference in coactivation. These findings have implications for rehabilitation and ergonomics in minimizing fatigue during prolonged activation of the dorsiflexor muscles.  相似文献   

8.
The purpose of this study was to compare the muscle response times (MRTs) of select lower extremity muscles following a weight bearing rotary perturbation in single-leg stance with and without shoes. Ten recreationally active females volunteered for this study. Each subject received a rotary perturbation in single-leg stance under two conditions: with shoes and without shoes. The outcomes measured were response times of the medial and lateral quadriceps, hamstrings and gastrocnemius. The results demonstrated that significant differences in MRTs were not apparent for either the medial or lateral perturbation between conditions. While a main effect for muscle was evident for both medial and lateral perturbations, a muscle by shoe interaction was not present for either the medial or lateral perturbation. Our findings suggest that wearing shoes does not alter MRTs during single-limb rotary perturbations. These data indicate that lower extremity perturbation device testing may be done with or without shoes and comparisons between works are permissible as response times are unaffected.  相似文献   

9.
Previous studies have identified differences in gait kinetics between healthy older and young adults. However, the underlying factors that cause these changes are not well understood. The objective of this study was to assess the effects of age and speed on the activation of lower-extremity muscles during human walking. We recorded electromyography (EMG) signals of the soleus, gastrocnemius, biceps femoris, medial hamstrings, tibialis anterior, vastus lateralis, and rectus femoris as healthy young and older adults walked over ground at slow, preferred and fast walking speeds. Nineteen healthy older adults (age, 73 ± 5 years) and 18 healthy young adults (age, 26 ± 3 years) participated. Rectified EMG signals were normalized to mean activities over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle and modulated with speed. Compared to the young adults, the older adults exhibited greater activation of the tibialis anterior and soleus during mid-stance at all walking speeds and greater activation of the vastus lateralis and medial hamstrings during loading and mid-stance at the fast walking speed, suggesting increased coactivation across the ankle and knee. In addition, older adults depend less on soleus muscle activation to push off at faster walking speeds. We conclude that age-related changes in neuromuscular activity reflect a strategy of stiffening the limb during single support and likely contribute to reduced push off power at fast walking speeds.  相似文献   

10.
This paper investigated whether the ratio of medial–lateral hamstring muscular activation could be altered with changes in foot rotation position (both internal and external rotation) during three standard lower limb exercises. It has been suggested that those with medial compartment knee OA activate the lateral hamstrings more than the medial to help unload the diseased compartment; therefore, preferential activation of this muscle during lower limb exercise may help to further decrease the stresses on the articular cartilage and be an effective intervention for knee OA and lateral hamstring injury. Thirteen healthy young adult subjects were tested and average medial and lateral hamstring EMG data during the full exercise, as well as the concentric and eccentric phases, were used to calculate the medial–lateral (M–L) hamstring activation ratio for each exercise and foot position. Results suggest that internal foot rotation increases the M–L hamstring activation ratio while external foot rotation decreases this ratio. Therefore, altering the position of the foot during standard lower limb exercise can help selectively activate the medial or lateral hamstring muscle groups. This selective activation may have implication in treating symptoms of knee osteoarthritis and hamstring injury; but, longitudinal intervention studies would be needed to determine clinical utility.  相似文献   

11.
Drop landings and drop jumps are common training exercises and injury research model tasks. Drop landings have a single landing, whereas drop jumps include a subsequent jump after initial landing. With the expected ground impact, instant and landing surface suggested to modulate landing neuromechanics, muscle activity, and kinetics should be the same in both tasks when landing from the same height onto the same surface. Although previous researchers have noted some differences between these tasks across separate studies, little research has compared these tasks in the same study. Thus, we examined whether a subsequent movement after initial landing alters muscle activity and kinetics between drop landings and jumps. Fifteen women performed 10 drop landings and drop jumps each from 45 cm. Muscle onsets and integrated muscle activation amplitudes 150 milliseconds before (preactivity) and after landing (postactivity) in the medial and lateral quadriceps, hamstrings, and lateral gastrocnemius and peak and time-to-peak vertical ground reaction forces were examined across tasks (p ≤ 0.05). When performing drop jumps, subjects demonstrated later (p = 0.02) gastrocnemius and lesser lateral gastrocnemius (p = 0.002) and medial quadriceps (p = 0.02) preactivity followed by increased postactivity in all muscles (p = 0.006), with higher peak vertical ground reaction forces (p = 0.04) but no differences in times to these peaks (p = 0.60) than drop landings. The later gastrocnemius activation, higher gastrocnemius and quadriceps postlanding amplitudes, and higher ground reaction forces in drop jumps may allow subjects to propel the body vertically after the initial landing vs. simply absorbing impact in drop landings. Our results indicate that in addition to landing surface and height, anticipation of a subsequent task changes landing neuromechanics. Generalizations of results from landing-only studies should not be made with landing followed-by-subsequent-activity studies. Landing exercises should be incorporated based on sport-specific demands.  相似文献   

12.
The aim of this study was to investigate muscle?s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal?s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7–542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors? muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task.  相似文献   

13.
Spatially resolved near-infrared oximeters quantify non-invasively muscle haemoglobin oxygen saturation (TOI) and, indirectly, local venous oxygen saturation (SvO(2)) and blood flow (MBF). TOI, SvO(2) and MBF of vastus lateralis and medial gastrocnemius were investigated after 5-min walking (3.2 km/h) and running (9.6 km/h) (n=7). The values of TOI were unchanged in the vastus lateralis during walking, whilst decreased during running in both muscles. For both muscles, TOI and SvO(2) values after walking were significantly greater than those found after running (P=0.043). The TOI went back (in 2 min) to its baseline value after walking in both muscles, whilst more slowly (in 4 min) after running in vastus lateralis. After running TOI of medial gastrocnemius had a tendency to be higher than the baseline value (reactive hyperaemia), concomitantly to the high MBF (twice the control value). The diverse oxygen demand in the stress tests and the consequent different pattern of TOI recovery reflect the different engagement of the two muscles. In conclusion, these results demonstrated the utility of TOI, independent of MBF and SvO(2), to be measured upon specific stress testing for differentiating the severity of peripheral vascular diseases and for assessing the collateral blood flow.  相似文献   

14.
Falls and injuries due to falls are a major health concern, and accidental slips are a leading cause of falls during gait. Understanding how the body reacts to an unexpected slip can aid in developing intervention techniques to reduce the number of injuries due to falls. In this study, muscle activation patterns, specifically those of the trailing (non-slipping) limb, were studied in unexpected slips of 24 young and 24 middle-aged adults. The typical reaction of the trailing limb is swing phase interruption in an attempt to arrest the slip. Variables examined were the reactive muscle activation onset, peak electromyography (EMG) magnitude, and time-to-peak of the vastus lateralis and medial hamstring of the trailing limb. Statistical analysis was performed to determine the effects of slip severity, quantified by peak slip velocity, and age on outcome variables. As slip severity increased, the reactive activation onset of the medial hamstring was significantly faster and there was a trend approaching significance for the onset of the vastus lateralis. Additionally, the peak magnitude and time-to-peak of the vastus lateralis increased with slip severity. No significant effects of age were found on any of the output variables. These findings may aid in development of perturbation-based paradigms, as it may be possible to “tune” the postural control system to generate an appropriate response to unexpected slips.  相似文献   

15.
The tibiofemoral joint (TFJ) experiences large compressive articular contact loads during activities of daily living, caused by inertial, ligamentous, capsular, and most significantly musculotendon loads. Comparisons of relative contributions of individual muscles to TFJ contact loading between walking and sporting movements have not been previously examined. The purpose of this study was to determine relative contributions of individual lower-limb muscles to compressive articular loading of the medial and lateral TFJ during walking, running, and sidestepping. The medial and lateral compartments of the TFJ were loaded by a combination of medial and lateral muscles. During all gait tasks, the primary muscles loading the medial and lateral TFJ were the vastus medialis (VM) and vastus lateralis (VL) respectively during weight acceptance, while typically the medial gastrocnemii (MG) and lateral gastrocnemii (LG) dominated medial and lateral TFJ loading respectively during midstance and push off. Generally, the contribution of the quadriceps muscles were higher in running compared to walking, whereas gastrocnemii contributions were higher in walking compared to running. When comparing running and sidestepping, contributions to medial TFJ contact loading were generally higher during sidestepping while contributions to lateral TFJ contact loading were generally lower. These results suggests that after orthopaedic procedures, the VM, VL, MG and LG should be of particular rehabilitation focus to restore TFJ stability during dynamic gait tasks.  相似文献   

16.
Stair ascent and descent requires large knee motions and muscle forces that can be challenging for people with anterior cruciate ligament (ACL) deficiency. Movement and muscle activity patterns were compared in two groups of ACL deficient subjects and a group of uninjured subjects. The ACL deficient subjects were prospectively classified according to functional ability. "Copers" were defined as individuals with complete ACL rupture and no symptoms of knee instability and participated in high-level sports without difficulty. "Non-copers" were defined as ACL deficient individuals who had instability with low-level daily activities and were not able to participate in sports. Sagittal plane kinematic and kinetic data from the hip, knee and ankle and electromyographic data from the vastus lateralis, lateral hamstring, medial gastrocnemius, and soleus were collected as subjects stepped up and over a 26 cm high step. Both coper and non-coper subjects had altered movement patterns as they controlled the rapid movement from step ascent to descent with their involved limbs. Only non-copers used significantly different movement patterns on their involved limb compared to controls after they had descended from the step and their involved side accepted the weight of the body. Classifying subjects by functional ability resulted in more pronounced differences in movement patterns between non-copers and copers. Copers moved more like uninjured subjects.  相似文献   

17.
Despite the wide use of surface electromyography (EMG) recorded during dynamic exercises, the reproducibility of EMG variables has not been fully established in a course of a dynamic leg exercise. The aim of this study was to investigate the reproducibility of eight lower limb muscles activity level during a pedaling exercise performed until exhaustion. Eight male were tested on two days held three days apart. Surface EMG was recorded from vastus lateralis, rectus femoris (RF), vastus medialis, semimembranosus, biceps femoris, gastrocnemius lateral, gastrocnemius medianus and tibialis anterior during incremental exercise test. The root mean square, an index of global EMG activity, was averaged every five crank revolutions (corresponding to about 3 s at 85 rpm) throughout the tests. Despite inter-subjects variations, we showed a high reproducibility of the activity level of lower limb muscles during a progressive pedaling exercise performed until exhaustion. However, RF muscle seemed to be the less reproducible of the eight muscles investigated during incremental pedaling exercise. These results suggest that each subject adopt a personal muscle activation strategy in a course of an incremental cycling exercise but fatigue phenomenon can induce some variations in the most fatigable muscles (RF).  相似文献   

18.
Patellofemoral pain (PFP) is a common condition that occurs more frequently in females. Anatomical, hormonal and neuromuscular factors have been proposed to contribute to the increased incidence of PFP in females, with neuromuscular factors considered to be of particular importance. This cross-sectional study aimed to evaluate differences in the neuromotor control of the knee and hip muscles between genders and to investigate whether clinical measures of hip rotation range and strength were associated with EMG measures of hip and thigh motor control. Twenty-nine (16 female and 13 male) asymptomatic participants completed a visual choice reaction-time stair stepping task. EMG activity was recorded from vastus medialis oblique, vastus lateralis, anterior and posterior gluteus medius muscles. In addition hip rotation range of motion and hip external rotation, abduction and trunk strength were assessed. There were no differences in the timing or peak of EMG activation of the vasti or gluteus medius muscle between genders during the stepping task. There were however significant associations between EMG measures of motor control of the vasti and hip strength in both females and males. These findings are suggestive of a link between hip muscle control and vasti neuromotor control.  相似文献   

19.
Using ultrasound, muscle thickness and fascicle angles from aponeurosis were evaluated before, during and after 20 days bed rest (BR). Subjects were healthy adults (4 women and 4 men). Measurements were carried out before and after BR and after 10 weeks of recovery, respectively. Muscle measurements were taken at nine sites in trunk and upper and lower extremities, respectively. For the m. triceps brachii, m. vastus lateralis, and m. gastrocnemius medialis, fascicle angles from the aponeurosis as well as muscle thickness were measured. There was a high statistical significant correlation between muscle thickness and cross-sectional area for quadriceps muscles, suggesting applicability of muscle thickness for evaluation of muscle size. Muscle thickness decreased in muscles of the lower extremity by 2.1-4.4 % after bed rest. In triceps brachii and vastus lateralis muscles, there were no prominent changes in muscle thickness and fascicle angles. It was concluded that muscle morphology deteriorates with changes in muscle architecture by bed rest but the response is small and muscle-specific. It was also suggested that bed rest affects not only muscle mass but muscle tone as well.  相似文献   

20.
Guinea pig soleus, medial gastrocnemius and vastus lateralis muscles were compared for spindle density and distribution, number of intrafusal fibers per spindle and histochemical appearance of the axial bundle. A total of 326 spindles was used in the comparisons. Spindle density was over four times greater in the soleus than in either the medial gastrocnemius or vastus lateralis. In the soleus the spindles were distributed at random, but in the other two muscles no spindles were found in those fascicles in which fast-twitch glycolytic extrafusal fibers predominated. The average number of intrafusal fibers per spindle varied by less than 5% between the three kinds of muscles. About 80% of all spindles located had four intrafusal fibers, two of the nuclear bag type and two of the nuclear chain type. The histochemical appearance of the axial bundle was the same in each kind of muscle. Based on intensities of the myofibrillar adenosine triphosphatase reaction product at polar regions nuclear bag fibers were separable into two histochemical groups; nuclear chain fibers were of only one histochemical type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号