首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two populations of phencyclidine (PCP) binding sites are shown to exist in the rat brain: a high-affinity monovalent ion-sensitive site (Kd of 10-14 nM for [3H]TCP, [3H]N-[1-(2-thienyl)cyclohexyl]piperidine), which exists in both the frontal cortex and the hippocampus, and a lower affinity site (Kd of 80-130 nM for [3H]TCP) which is found in the hippocampus but not in the frontal cortex. The nature of the interactions between the ion-binding sites and the high affinity PCP receptors depend on both ligand structure (PCP or TCP) and the ion involved (K' or Na'). The high-affinity sites are associated with an Mr 90,000 polypeptide whose labeling by [3H]azido phencyclidine is selectively inhibited by monovalent ions.  相似文献   

2.
A F Ikin  Y Kloog  M Sokolovsky 《Biochemistry》1990,29(9):2290-2295
The N-methyl-D-aspartate (NMDA)/phencyclidine (PCP) receptor from rat forebrain was solubilized with sodium cholate and purified by affinity chromatography on amino-PCP-agarose. A 3700-fold purification was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol revealed four major bands of Mr 67,000, 57,000, 46,000, and 33,000. [3H]Azido-PCP was irreversibly incorporated into each of these bands after UV irradiation. The dissociation constant (Kd) of [1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to the purified NMDA/PCP receptor was 120 nM. The maximum specific binding (Bmax) for [3H]TCP binding was 3.3 nmol/mg of protein. The pharmacological profile of the purified receptor complex was similar to that of the membranal and soluble receptors. The binding of [3H]TCP to the purified receptor was modulated by the NMDA receptor ligands glutamate, glycine, and NMDA.  相似文献   

3.
Phencyclidine (PCP) receptors were successfully solubilized from rat forebrain membranes with 1% sodium cholate. Approximately 58% of the initial protein and 20-30% of the high-affinity PCP binding sites were solubilized. The high affinity toward PCP-like drugs, the stereo-selectivity of the sites, and the sensitivity to N-methyl-D-aspartate (NMDA) receptor ligands were preserved. Binding of the potent PCP receptor ligand N-[3H][1-(2-thienyl)cyclohexyl] piperidine ([3H]TCP) to the soluble receptors was saturable (KD = 35 nM), and PCP-like drugs inhibited [3H]TCP binding in a rank order of potency close to that observed for the membrane-bound receptors; the most potent inhibitors were TCP (Ki = 31 nM) and the anticonvulsant MK-801 (Ki = 50 nM). The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid inhibited binding of [3H]TCP to the soluble receptors; glutamate or NMDA diminished this inhibition in a dose-dependent manner. Taken together, the results indicate that the soluble PCP receptor preparation contains the glutamate recognition sites and may represent a single receptor complex for PCP and NMDA, as suggested by electrophysiological data. The successful solubilization of the PCP receptors in an active binding form should now facilitate their purification.  相似文献   

4.
The electrophilic affinity ligand, (+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine hydrochloride {(+)-MK801-NCS} was characterized for its ability to acylate phencyclidine (PCP) and sigma binding sites in vivo. Initial studies, conducted with mouse brain membranes, characterized the binding sites labeled by [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). The Kd values of [3H]TCP for PCP site 1 (MK801-sensitive) and PCP site 2 (MK801-insensitive) were 12 nM and 68 nM, with Bmax values of 1442 and 734 fmol/mg protein, respectively. Mice were sacrificed 18–24 hours following intracerebroventricular administration of the acylator. The administration of (+)-MK801-NCS increased [3H]TCP binding to site 2, but not to site. 1. Although (+)-MK801-NCS decreased [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d; cbcyclohepten-5,10-imine maleate ([3H](+)-MK801) binding to site 1, it had no effect on [3H]TCP binding to site 1. Viewed collectively with other published data, these data support the hypothesis that PCP sites 1 and 2 are distinct binding sites, and that [3H]TCP and [3H](+)-MK801 label different domains of the PCP binding site associated with the NMDA receptor.Abbreviations ((+)-MK801) (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine - ((+)-MK801-NCS) (+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine hydrochloride - (PCP) 1-(1-phencyclohexyl)piperidine - (TCP) 1-{1-(2-thienyl)cyclohexyl}piperidine - (DTG) (2-(tllyl)guanidine - (metaphit) (1-(1-(3-isothiocyanatophenyl)-cyclohexyl)piperidine) - (NMDA) N-methyl-D-aspartate - (HEPPSO) (N-[2-hydroxyethyl]piperazine-N-[2-hydroxypropanesulfoni c acid] - ((+)-MK801-NCS) (+)-5-methyl(3-isothiocyanatophenyl)-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine - (NMDA) N-methyl-D-aspartate Address reprint requests to Dr. Rothman, Phone (410)550-1487.FAX 410-550-2997  相似文献   

5.
Two high affinity phencyclidine (PCP) binding sites, labelled by [3H] 1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP), have been identified in guinea pig brain, with one site coupled to the N-methyl-D-aspartate (NMDA) receptor (site 1) and the other site associated with the dopamine reuptake carrier complex (site 2). In this study, PCP enhanced the dissociation of [3H]TCP from PCP site 1 and site 2, while (+)-MK801 only enhanced dissociation of [3H]TCP from PCP site 1. Although additional studies will be required to determine the exact mechanism(s) of these effects, these data demonstrate that the interactions of PCP with both site 1 and site 2 are more complex than previously appreciated.  相似文献   

6.
We have identified a monoclonal antibody, B6B21, that significantly elevates long-term potentiation when applied to CA1 pyramidal cell apical dendrites in rat hippocampal slices and characterized its binding to N-methyl-D-aspartate-receptor complexes using extensively washed hippocampal membranes. Five micrograms of affinity-purified B6B21 per 100 micrograms of membranes gave a two- to threefold elevation in N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) binding. When [3H]TCP binding was stimulated by the combined addition of maximal concentrations of glutamate, glycine, and magnesium, B6B21 no longer stimulated [3H]TCP binding. Like glycine, B6B21 enhanced the effect of N-methyl-D-aspartate and glutamate in stimulating [3H]TCP binding. Moreover, B6B21 reversed 7-chlorokynurenic acid inhibition of [3H]TCP binding, but it had no effect on the inhibition of [3H]TCP binding by D-(-)-2-amino-5-phosphonovaleric acid. B6B21 increased the rate of association and dissociation of [3H]TCP, but had no effect on equilibrium binding. Glutamate, but not glycine, however, increased B6B21-enhancement of [3H]TCP association and dissociation. B6B21 binding at strychnine-insensitive glycine sites was confirmed by direct measurement of [3H]glycine binding. These results suggest that B6B21 binds directly to N-methyl-D-aspartate receptors and displays properties similar to glycine.  相似文献   

7.
We studied the characteristics of [3H]cocaine binding to membranes prepared from whole guinea pig brain. Cocaine binding was specific and saturable. A one-site binding model fit the data adequately: the Kd value of [3H]cocaine was 44 nM with a Bmax value of 280 fmol/mg protein. The rank order of potency for the [3H]cocaine binding site was paroxetine > clomipramine > (–)-cocaine > fluoxetine > mazindol > desipramine > GBR12909 > phencyclidine > benztropine > GBR12935 > (+)-cocaine. The IC50 values of these drugs for inhibition of [3H]cocaine binding were highly correlated with their IC50 values for inhibition of [3H]5-HT uptake into synaptosomes prepared from whole guinea pig brain. High affinity 5-HT uptake inhibitors produced dose-dependent wash-resistant (pseudoirreversible) inhibition of [3H]cocaine binding. The wash-resistant inhibition produced by paroxetine was due to an increase in the Kd of [3H]cocaine binding sites, and was accompanied by an increase in the dissociation rate, consistent with an allosteric mechanism. These studies suggest that, using membranes prepared from whole guinea pig brain, [3H]cocaine labels a binding site associated with serotonin transporter and that paroxetine and cocaine bind to different sites on the serotonin transporter.Abbreviations GBR12909 1-(2-{bis(4-fluorophenyl)methoxy}ethyl)-4-{3-phenylpropyl}piperazine - TCP 1-{1-(2-thienyl)cyclohexyl}piperidine - BTCP N-{1-(2-benzo(b)thiophenyl)cyclohexyl}piperidine - PCP 1-(1-phenylcyclohexyl)piperidine - GBR12935 (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine) - CMI clomipramine  相似文献   

8.
We studied [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine [( 3H]TCP) binding to human frontal cortex obtained at autopsy from 10 histologically normal controls and eight histopathologically verified cases with Alzheimer-type dementia (ATD). Extensively washed membrane preparations were used to minimize the effects of endogenous substances. In ATD frontal cortex, the total concentration (Bmax) of [3H]TCP binding sites was significantly reduced by 40-50%. The apparent dissociation constant (KD) values showed no significant change. The reduction in binding capacity was also apparent in Triton X-100-treated membrane preparations, and there was a linear correlation between the number of [3H]TCP binding sites and that of N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate binding sites. [3H]TCP binding sites spared in ATD brains retained the affinity for the ligand and the reactivity to NMDA, L-glutamate, and glycine. These results suggest that the primary change in NMDA receptor-ion channel complex in ATD brains is the reduction of its number, possibly reflecting the loss of neurons bearing these receptor complexes, and that the functional linkage within the receptor complexes spared in ATD brains remains normal.  相似文献   

9.
R Haring  Y Kloog  A Kalir  M Sokolovsky 《Biochemistry》1987,26(18):5854-5861
Binding and photoaffinity labeling experiments were employed in order to differentiate 1-(1-phenylcyclohexyl)piperidine (PCP) receptor sites in rat brain. Two classes of PCP receptors were characterized and localized: one class binds [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) with high affinity (Kd = 10-15 nM) and the other binds the ligand with a relatively low affinity (Kd = 80-100 nM). The two classes of sites have different patterns of distribution. Forebrain regions are characterized by high-affinity sites (hippocampus greater than frontal cortex greater than thalamus greater than olfactory bulb greater than hypothalamus), but some parts (e.g., hippocampus, hypothalamus) contain low-affinity sites as well. In the cerebellum only low-affinity sites were detected. Binding sites for [3H]PCP and for its photolabile analogue [3H]azido-PCP showed a regional distribution similar to that of the [3H]TCP sites. The neuroleptic drug haloperidol did not block binding to either the high- or the low-affinity [3H]TCP sites, whereas Ca2+ inhibited binding to both. Photoaffinity labeling of the PCP receptors with [3H]AZ-PCP indicated that five specifically labeled polypeptides of these receptors (Mr 90,000, 62,000, 49,000, 40,000, and 33,000) are unevenly distributed in the rat brain. Two of the stereoselectively labeled polypeptides (Mr 90,000 and 33,000) appear to be associated with the high- and low-affinity [3H]TCP-binding sites; the density of the Mr 90,000 polypeptide in various brain regions correlates well with the localization of the high-affinity sites, whereas the density of the Mr 33,000 polypeptide correlates best with the distribution of the low-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
High-affinity binding sites (apparent KD 2.87 nM) for [3H]desmethylimipramine ([3H]DMI), have been demonstrated and characterized in membrane preparations of bovine adrenal medulla. The binding of [3H]DMI improved upon pretreatment of the membrane with KCl and was saturable, sodium dependent, and potently inhibited by nisoxetine and imipramine. [3H]DMI binding was also inhibited by various phencyclidine (PCP)- and (or) sigma-receptor ligands, with the following order of potency: haloperidol > rimcazole > (-)-butaclamol > dextromethorphan > MK-801 > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP) > PCP > N-(2-thienyl)cyclohexyl-3,4-piperidine (TCP) > (+)-SKF-10047 > (-)-SKF-10047. The inhibition produced by sigma ligands was not attributed to stimulation of either sigma 1- or sigma 2-receptors, owing to inactivity of the selective sigma-receptor ligands (+)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG). The inhibition of [3H]DMI binding by sigma- and PCP-receptor ligands was not attributed to PCP1- or PCP2-receptor stimulation, owing to the decreased potency (100-fold) of these ligands in [3H]DMI assays compared with the affinity for brain PCP1 sites, and the ineffectiveness of the PCP2-ligand N-(1-(2-benzo(b)thiophenyl)cyclohexyl)piperidine (BTCP). Scatchard analysis of the inhibition by the sigma-ligands haloperidol and (+)-3-PPP, as well as the PCP1 receptor ligand MK-801, demonstrated noncompetitive interaction with the site bound by [3H]DMI. These studies indicate that bovine adrenomedullary membranes possess a specific receptor for the noradrenaline uptake inhibitor [3H]DMI, which is sensitive to allosteric modulation produced by PCP and sigma-ligands.  相似文献   

11.
The effect of temperature on the binding of [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) to the ion channel of the N-methyl-D-aspartate (NMDA) receptors was studied in washed rat brain-cortex membranes. Raising the temperature from 5 to 33 degrees C resulted in a significant increase in the association rates of [3H]TCP binding measured in the presence of 1 microM glutamate and 1 microM glycine, but was less effective in the absence of the added agonists. No such effects of temperature on the dissociation rates of [3H]TCP-receptor complexes were observed. In the absence of agonists, neither the association nor the dissociation binding components varied with temperature, suggesting a diffusion-controlled limitation of access of the ligand to its site within the nonactivated NMDA receptor. No evidence was found for a temperature-dependent change in the density of [3H]TCP binding sites or for heterogeneity of [3H]TCP binding sites associated with the NMDA receptor, even though when approaching equilibrium the binding kinetics in the presence of glutamate and glycine deviated from an ordinary bimolecular reaction scheme. The data were fitted instead to a two-exponent binding function, comprising the sum of a fast and a slow binding component. Their corresponding time constants exhibited an increase with temperature, and the increase of each one was correlated significantly with the corresponding decrease in the equilibrium binding constant; however, there was no temperature-related change in the relative proportions of the two components, with the fast binding component (alpha) accounting for 50-70% of the site population.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ([3H]GBR 12935) was studied in membrane preparations of several human brain regions. In putamen, the substituted piperazine derivates cis- and trans-flupenthixol displaced 90% of the total [3H]GBR 12935 binding. Computer-assisted analysis of the competition curves revealed a high-affinity site (30%; KiH = 54 nM) and a low-affinity site (60%; KiL = 4.5 microM). The dopamine uptake blockers mazindol and nomifensine only displaced 30% of the total [3H]GBR 12935 binding in a monophasic way. Binding of [3H]GBR 12935 to the dopamine uptake sites, i.e., that displaced by dopamine uptake blockers, corresponded to part of the binding having low affinity for flupenthixol and was only detected in putamen, nucleus caudatus, nucleus accumbens, and substantia nigra. Even after masking the high-affinity binding site for flupenthixol by including 1 microM cis-flupenthixol in the binding assays, no dopamine uptake sites could be detected in globus pallidus, amygdala, thalamus, hippocampus, and cerebral cortex. Binding of [3H]GBR 12935 to dopamine uptake sites was lost in the nucleus caudatus ipsilateral to ventral midbrain infarctions, confirming their location on nigrostriatal nerve endings. Gross unilateral lesions of the striato- and pallidonigral pathways did not affect the number of dopamine uptake sites in the ipsilateral substantia nigra, suggesting that they may reside on the soma or dendrites of nigral neurons.  相似文献   

13.
The phencyclidine (PCP) derivative, [3H]N-[1-(2-benzo[b]thiophenyl)cyclohexyl]piperidine ([3H]BTCP), was used to label in vivo the dopamine uptake complex in mouse brain. The striatum accumulated the highest level of total and specific binding. Drugs which bind to the dopamine uptake site inhibited [3H]BTCP binding on an order similar to their in vitro affinities for the high-affinity [3H]BTCP site. Drugs which label selectively other monoamine uptake complexes. PCP, or sigma recognition sites were ineffective at doses up to 40 mg/kg. PCP bound to and dissociated from the dopamine uptake complex very rapidly. N-[1-(2-Thienyl)cyclohexyl]pideridine (TCP) and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) had no effect at any time or at any dose. These results imply that the pharmacological effects of PCP are due to its simultaneous interaction with the dopamine uptake complex and the PCP receptor. Conversely, TCP and MK-801, which have the same behavioral properties as PCP, exert their action only through the interaction with the PCP receptor.  相似文献   

14.
The binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate ([3H]MK-801) and N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) to the N-methyl-D-aspartate (NMDA) receptor complex of human brain has been investigated. Significant differences were noted between the binding of the two ligands in the same tissue samples. Binding of both ligands was stimulated by addition of glutamic acid or glycine. However, addition of both compounds resulted in an additional effect with [3H]MK-801 but not [3H]TCP binding. Saturation analysis revealed approximately twice as many high-affinity sites for [3H]MK-801 (Bmax, 1,500 +/- 300 fmol/mg of protein) than for [3H]TCP (Bmax, 660 +/- 170 fmol/mg of protein). In addition, a low-affinity site was detected for [3H]MK-801 binding but not [3H]TCP binding. The pharmacology of the high-affinity [3H]MK-801 and [3H]TCP binding sites was similar with rank order of potency of inhibitors being MK801 greater than TCP greater than phencyclidine greater than N-allylnormetazocine (SKF 10047). 2-Amino-5-phosphonopentanoate inhibited binding of both ligands with comparable potency whereas both 7-chlorokynurenic acid and ZnCl2 were more potent inhibitors of [3H]MK-801 than of [3H]TCP binding. All compounds examined exhibited Hill coefficients of significantly less than unity. Saturation analysis performed in the striatum revealed that the number of binding sites was the same for both [3H]MK-801 (Bmax, 1,403 +/- 394 fmol/mg) and [3H]TCP (Bmax, 1,292 +/- 305 fmol/mg). Addition of glutamate or glycine stimulated striatal binding but there was no further increase on addition of both together.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.  相似文献   

16.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

17.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

18.
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding.  相似文献   

19.
L D McVittie  D R Sibley 《Life sciences》1989,44(23):1793-1802
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) or [3H]MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4 degrees C. In the presence of detergent, [3H]TCP binding exhibits a Kd of 250 nM, a Bmax of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor ([3H]TCP binding: Kd = 48 nM, Bmax = 1.13 pmol/mg protein).  相似文献   

20.
Abstract: Binding of 1-[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to mouse brain and spinal cord membranes was studied using compounds selective for the NMDA-coupled 1-(1-phenylcyclohexyl)piperidine (PCP) and/or σ recognition sites. In both tissues, [3H]TCP labeled two populations of binding sites. Density of the low-affinity sites was approximately the same in both tissues, but the population of the high-affinity [3H]TCP sites was three times bigger in the brain than in the spinal cord. Self- and cross-displacement studies showed that the high-affinity [3H]TCP binding sites could be identical with NMDA receptor-coupled PCP sites, whereas the low-affinity [3H]TCP sites may be associated with σ binding sites in both tissues. The NMDA-coupled PCP sites labeled in the presence of 6.25 n M [3H]TCP constituted a much higher percentage of the total binding in the brain (75%) than in the spinal cord (44%). Consistent with this, reintroduction of glycine and glutamate significantly increased, but DA antagonists significantly inhibited [3H]TCP binding in the brain but not in the spinal cord. Together, these data suggest that a large component of [3H]TCP-labeled binding sites in the spinal cord may be associated with σ but not the NMDA receptor-coupled PCP sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号