首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mizuno T  Amano M  Kaibuchi K  Nishida Y 《Gene》1999,238(2):437-444
The Rho family of small GTPases and their associated regulators and targets are essential mediators of diverse morphogenetic events in development. Mammalian Rho-kinase/ROK alpha, one of the targets of Rho, has been shown to bind to Rho in GTP-bound form and to phosphorylate the myosin light chain (MLC) and the myosin-binding subunit (MBS) of myosin phosphatase, resulting in the activation of myosin. Thus, Rho-kinase/ROK alpha has been suggested to play essential roles in the formation of stress fibers and focal adhesions. We have identified the Drosophila homolog of Rho-kinase/ROK alpha, DRho-kinase, which has conserved the basic structural feature of Rho-kinase/ROK alpha consisting of the N-terminal kinase, central coiled-coil and C-terminal pleckstrin homology (PH) domains. A two-hybrid analysis demonstrated that DRho-kinase interacts with the GTP-bound form of the Drosophila Rho. Drho1, at the conserved Rho-binding site. DRho-kinase can phosphorylate MLC and MBS, preferable substrates for bovine Rho-kinase, in vitro. DRho-kinase is ubiquitously expressed throughout development, in a pattern essentially identical to that of Drho1. These results suggest that DRho-kinase is an effector of Drho1.  相似文献   

2.
Rho-binding kinase alpha (ROKalpha) is a serine/threonine kinase with multiple functional domains involved in actomyosin assembly. It has previously been documented that the C terminus part of ROKalpha interacts with the N-terminal kinase domain and thereby regulates its catalytic activity. Here we used antibodies against different domains of ROKalpha and were able to reveal some structural aspects that are essential for the specific functions of ROKalpha. Antibodies against the kinase domain revealed that this part of the protein is highly complex and inaccessible. Further experiments confirmed that this domain could undergo inter- and intramolecular interactions in a complex manner, which regulates the kinase catalytic activity. Other antibodies that raised against the coiled-coil domain, Rho binding domain, and the pleckstrin homology (PH) domain were all effective in recognizing the native proteins in an immunoprecipitation assay. Only the anti-Rho binding domain antibodies could activate the kinase independent of RhoA. The PH antibodies had no apparent effects on the catalytic activity but were effective in blocking actomyosin assembly and cell contractility. Likewise, mutations of the PH domains can abrogate its dominant negative effects on actin morphology. The subsequent disruption of endogenous ROK localization to the actomyosin network by overexpressing the PH domain is supportive of a role of the PH domain of ROK in targeting the kinase to these structures.  相似文献   

3.
The myotonic dystrophy kinase-related Cdc42-binding kinase (MRCKalpha) has been implicated in the morphological activities of Cdc42 in nonneural cells. Both MRCKalpha and the kinase-related Rho-binding kinase (ROKalpha) are involved in nonmuscle myosin light-chain phosphorylation and associated actin cytoskeleton reorganization. We now show that in PC12 cells, overexpression of the kinase domain of MRCKalpha and ROKalpha resulted in retraction of neurites formed on nerve growth factor (NGF) treatment, as observed with RhoA. However, introduction of kinase-dead MRCKalpha did not result in NGF-independent neurite outgrowth as observed with dominant negative kinase-dead ROKalpha or the Rho inhibitor C3. Neurite outgrowth induced by NGF or kinase-dead ROKalpha was inhibited by dominant negative Cdc42(N17), Rac1(N17), and the Src homology 3 domain of c-Crk, indicating the participation of common downstream components. Neurite outgrowth induced by either agent was blocked by kinase-dead MRCKalpha lacking the p21-binding domain or by a minimal C-terminal regulatory region consisting of the cysteine-rich domain/pleckstrin homology domain plus a region with homology to citron. The latter region alone was an effective blocker of NGF-induced outgrowth. These results suggest that although ROKalpha is involved in neurite retraction promoted by RhoA, the related MRCKalpha is conversely involved in neurite outgrowth promoted by Cdc42 and Rac.  相似文献   

4.
5.
The RhoA-binding kinase (ROK) is one of the target kinases of RhoA and is known to play a critical role in regulating cytoskeletal rearrangement in cells. ROK translocates to the plasma membrane fraction; however, the mechanism of the translocation of ROK still remains obscure. To clarify the molecular mechanisms of the translocation of ROK, we co-transfected MDCK cells wity cyan fluorescent protein-tagged RhoA and yellow fluorescent protein-tagged ROKα, or their variants, and monitored the localization and translocation of the two different fluorescent tagged-molecules in single living cells during epithelial growth factor (EGF) stimulation. Both RhoA (wild-type) and ROKα (wild-type) translocated to ruffling membrane with EGF stimulation in several minutes. A ROKα mutant, in which Rho-binding ability is disrupted, is unable to translocate to the membrane with RhoA. However, RhoA mutant Q63L/C190R, an active form lacking membrane localization activity, abolished the translocation of wild-type ROKα, suggesting that the translocation of RhoA is critical for ROK translocation to the membrane. Another mutant lacking the pleckstrin homology domain failed in translocation as well. On the other hand, it was surprising that the kinase dead mutant succeeded in translocation to the membrane after EGF stimulation. Based on these results, we propose the following ROKα translocation mechanism. ROKα binds to RhoA in cytosol and translocates to the membrane based on the membrane-targeting ability of active RhoA. After ROKα associates with the membrane, the pleckstrin homology domain provides the stability of ROKα on the membrane. The activation of enzymatic activity or adenosine triphosphate binding, however, is not directly related to the translocation mechanism, although we found that the membrane association is critical for the activation of the kinase activity.  相似文献   

6.
The Rho GTPases play distinctive roles in cytoskeletal reorganization associated with growth and differentiation. The Cdc42/Rac-binding p21-activated kinase (PAK) and Rho-binding kinase (ROK) act as morphological effectors for these GTPases. We have isolated two related novel brain kinases whose p21-binding domains resemble that of PAK whereas the kinase domains resemble that of myotonic dystrophy kinase-related ROK. These ~190-kDa myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs) preferentially phosphorylate nonmuscle myosin light chain at serine 19, which is known to be crucial for activating actin-myosin contractility. The p21-binding domain binds GTP-Cdc42 but not GDP-Cdc42. The multidomain structure includes a cysteine-rich motif resembling those of protein kinase C and n-chimaerin and a putative pleckstrin homology domain. MRCKα and Cdc42V12 colocalize, particularly at the cell periphery in transfected HeLa cells. Microinjection of plasmid encoding MRCKα resulted in actin and myosin reorganization. Expression of kinase-dead MRCKα blocked Cdc42V12-dependent formation of focal complexes and peripheral microspikes. This was not due to possible sequestration of the p21, as a kinase-dead MRCKα mutant defective in Cdc42 binding was an equally effective blocker. Coinjection of MRCKα plasmid with Cdc42 plasmid, at concentrations where Cdc42 plasmid by itself elicited no effect, led to the formation of the peripheral structures associated with a Cdc42-induced morphological phenotype. These Cdc42-type effects were not promoted upon coinjection with plasmids of kinase-dead or Cdc42-binding-deficient MRCKα mutants. These results suggest that MRCKα may act as a downstream effector of Cdc42 in cytoskeletal reorganization.  相似文献   

7.
The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway.  相似文献   

8.
The semaphorins are a family of proteins originally identified as axon-guiding molecules in the developing nervous system that have been recently shown to regulate many cellular functions, including motility, in a variety of cell types. We have previously shown that in endothelial cells Semaphorin 4D acts through its receptor, Plexin-B1, to elicit a pro-angiogenic phenotype that involves the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Here we show through the use of a receptor chimeric approach, Plexin-B1 mutants, and dominant negative and pharmacological inhibitors that this response is dependent upon the activation of RhoA and its downstream target, Rho kinase (ROK). Indeed, we demonstrate that in endothelial cells, Semaphorin 4D promotes the formation of focal adhesion complexes, stress fibers, and the phosphorylation of myosin light chain, a response that was abolished by the use of ROK inhibitors and absent from cells expressing Plexin-B1 mutant constructs incapable of signaling to RhoA. Stress fiber polymerization and contraction are in turn necessary for RhoA-dependent pro-angiogenic signaling through Plexin-B1. Furthermore, we observed that in endothelial cells Plexin-B1 promotes the integrin-mediated activation of Pyk2, resulting in the stimulation of PI3K, Akt, and ERK. These findings provide evidence that Plexin-B1 promotes endothelial cell motility through RhoA and ROK by regulating the integrin-dependent signaling networks that result in the activation of PI3K and Akt.  相似文献   

9.
Mammalian cDNA expression cloning was used to identify novel regulators of integrin-mediated cell-substratum adhesions. Using a focal adhesion morphology screen, we identified a cDNA with homology to a receptor for activated protein kinase C (RACK1) that induced a loss of central focal adhesions and stress fibers in CHO-K1 cells. The identified cDNA was a C-terminal truncated form of RACK1 that had one of the putative protein kinase C binding sites but lacked the region proposed to bind the beta integrin cytoplasmic domain and the tyrosine kinase Src. To investigate the role of RACK1 during cell spreading and migration, we tagged RACK1, a C-terminal truncated RACK1 and a point mutant that does not bind Src (RACK Y246F) with green fluorescent protein and expressed them in CHO-K1 cells. We found that RACK1 regulates the organization of focal adhesions and that it localizes to a subset of nascent focal complexes in areas of protrusion that contain paxillin but not vinculin. We also found that RACK1 regulates cell protrusion and chemotactic migration through its Src binding site. Together, these findings suggest that RACK1 regulates adhesion, protrusion, and chemotactic migration through its interaction with Src.  相似文献   

10.
Proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase structurally related to focal adhesion kinase (FAK), is implicated in regulating cytoskeletal organization. However, mechanisms by which PYK2 participates in and regulates cytoskeletal organization remain largely unknown. Here we report identification of PSGAP, a novel protein that interacts with PYK2 and FAK and contains multiple domains including a pleckstrin homology domain, a rhoGTPase-activating protein domain, and a Src homology 3 domain. PYK2 interacts with PSGAP Src homology 3 domain via the carboxyl-terminal proline-rich sequence. PSGAP is able to increase GTPase activity of CDC42 and RhoA in vitro and in vivo. Remarkably, PYK2, but not FAK, can activate CDC42 via inhibition of PSGAP-mediated GTP hydrolysis of CDC42. Moreover, PSGAP is localized at cell periphery in fibroblasts in a pleckstrin homology domain-dependent manner. Over expression of PSGAP in fibroblasts results in reorganization of cytoskeletal structures and changes of cellular morphology, which requires rhoGTPase-activating activity. Taken together, our results suggest that PSGAP is a signaling protein essential for PYK2 regulation of cytoskeletal organization via Rho family GTPases.  相似文献   

11.
Trio is a complex protein containing two guanine nucleotide exchange factor domains each with associated pleckstrin homology domains, a serine/threonine kinase domain, two SH3 domains, an immunoglobulin-like domain, and spectrin-like repeats. Trio was originally identified as a LAR tyrosine phosphatase-binding protein and is involved in actin remodeling, cell migration, and cell growth. Herein we provide evidence that Trio not only activates RhoA but is also a RhoA target. The RhoA-binding site was mapped to the Trio immunoglobulin-like domain. RhoA isoprenylation is necessary for the RhoA-Trio interaction, because mutation of the RhoA carboxyl-terminal cysteine residue blocked binding. The existence of an intramolecular functional link between RhoA activation and RhoA binding is suggested by the finding that Trio exchange activity enhanced RhoA binding to Trio. Furthermore, immunofluorescence studies of HeLa cells showed that although ectopically expressed Trio was evenly distributed within the cell, co-expression of Trio with RhoA resulted in relocalization of Trio into punctate structures. Relocalization was not observed with Trio constructs lacking the immunoglobulin-like domain, indicating that RhoA acts to regulate Trio localization via binding to the immunoglobulin-like domain. We propose that Trio-mediated RhoA activation and subsequent RhoA-mediated relocalization of Trio functions to modulate and coordinate Trio signaling.  相似文献   

12.
13.
The Ras-related Rho family GTPases mediate signal transduction pathways that regulate a variety of cellular processes. Like Ras, the Rho proteins (which include Rho, Rac, and CDC42) interact directly with protein kinases, which are likely to serve as downstream effector targets of the activated GTPase. Activated RhoA has recently been reported to interact directly with several protein kinases, p120 PKN, p150 ROK alpha and -beta, p160 ROCK, and p164 Rho kinase. Here, we describe the purification of a novel Rho-associated kinase, p140, which appears to be the major Rho-associated kinase activity in most tissues. Peptide microsequencing revealed that p140 is probably identical to the previously reported PRK2 kinase, a close relative of PKN. However, unlike the previously described Rho-binding kinases, which are Rho specific, p140 associates with Rac as well as Rho. Moreover, the interaction of p140 with Rho in vitro is nucleotide independent, whereas the interaction with Rac is completely GTP dependent. The association of p140 with either GTPase promotes kinase activity substantially, and expression of a kinase-deficient form of p140 in microinjected fibroblasts disrupts actin stress fibers. These results indicate that p140 may be a shared kinase target of both Rho and Rac GTPases that mediates their effects on rearrangements of the actin cytoskeleton.  相似文献   

14.
The RhoA GTPase plays a vital role in assembly of contractile actin-myosin filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in culture. GEF-H1 is a microtubule-associated guanine nucleotide exchange factor that activates RhoA upon release from microtubules. The overexpression of GEF-H1 deficient in microtubule binding or treatment of HeLa cells with nocodazole to induce microtubule depolymerization results in Rho-dependent actin stress fiber formation and contractile cell morphology. However, whether GEF-H1 is required and sufficient to mediate nocodazole-induced contractility remains unclear. We establish here that siRNA-mediated depletion of GEF-H1 in HeLa cells prevents nocodazole-induced cell contraction. Furthermore, the nocodazole-induced activation of RhoA and Rho-associated kinase (ROCK) that mediates phosphorylation of myosin regulatory light chain (MLC) is impaired in GEF-H1–depleted cells. Conversely, RhoA activation and contractility are rescued by reintroduction of siRNA-resistant GEF-H1. Our studies reveal a critical role for a GEF-H1/RhoA/ROCK/MLC signaling pathway in mediating nocodazole-induced cell contractility.  相似文献   

15.
In fibroblasts, the G protein alpha subunits Galpha(12) and Galpha(13) stimulate Rho-dependent stress fiber formation and focal adhesion assembly, whereas G protein betagamma subunits instead exert a disruptive influence. We show here that the latter can, however, stimulate the formation of stress fibers and focal adhesions in epithelial-like HeLa cells. Transient expression of beta(1) with gamma(2), gamma(5), gamma(7), and gamma(12) in quiescent HeLa cells induced stress fiber formation and focal adhesion assembly as did expression of the constitutively active Galpha(12). Co-expression of betagamma with Galpha(i2) and the C-terminal fragment of the beta-adrenergic receptor kinase, both of which are known to bind and sequester free betagamma, blocked betagamma-induced stress fiber and focal adhesion formation. Inhibition was also noted with co-expression of a dominant negative mutant of Rho. Botulinum C3 exoenzyme, which ADP-ribosylates and inactivates Rho, and a Rho-associated protein kinase inhibitor, Y-27632, similarly inhibited betagamma-induced stress fiber and focal adhesion assembly. These results indicate that G protein betagamma subunits regulate Rho-dependent actin polymerization in HeLa cells.  相似文献   

16.
Rho GTPases play pivotal roles in regulating cell morphology. We previously showed that RhoA acts via ROKalpha to counteract the effects of the classical second messenger cyclic AMP on cell shape changes. Here we show that active Cdc42V12 also competes against the cAMP-induced stellate morphology in SH-EP cells. This Cdc42 effect is not mediated by the RhoA/ ROK pathway but rather the related MRCKalpha, a myotonic dystrophy kinase-related Cdc42-binding kinase. Co-expression of a dominant inhibitory MRCKalpha mutant with Cdc42V12 blocks the ability of the GTPase to counteract cAMP, suggesting that MRCK acts downstream of Cdc42 in this process. Cdc42V12 enhances the phosphorylation of myosin light chain (MLC) at the cell periphery and sustains focal adhesion complexes, while MLC kinase inhibitors destroy focal adhesion complexes and impair the Cdc42V12 protective effect. The data suggest that the maintenance of focal adhesion complexes via the regulation of myosin II activity underlies the ability of Cdc42 to protect against the effect of elevated cAMP.  相似文献   

17.
The attachment of epithelial cells to the extracellular matrix substratum is essential for their differentiation and polarization. Despite this, the precise adhesion mechanism and its regulation are poorly understood. In the kidney, an ischemic insult causes renal tubular epithelial cells to detach from the basement membrane, even though they remain viable. To understand this phenomenon, and to probe the regulation of epithelial cell attachment, we used a model system consisting of newly adherent Madin-Darby canine kidney (MDCK) cells subjected to ATP depletion to mimic ischemic injury. We found that MDCK cells detach from collagen I after 60 min of ATP depletion but reattach when resupplied with glucose. Detachment is not caused by degradation or endocytosis of 1-integrins, which mediate attachment to collagen I. Basal actin filaments and paxillin-containing adhesion complexes are disrupted by ATP depletion and quickly reform on glucose repletion. However, partial preservation of basal actin by overexpression of constitutively active RhoA does not significantly affect cell detachment. Furthermore, Y-27632, an inhibitor of the RhoA effector Rho-kinase, does not prevent reattachment of cells on glucose addition, even though reformation of central stress fibers and large adhesion complexes is blocked. In contrast, reattachment of ATP-depleted cells and detachment of cells not previously subjected to ATP depletion are prevented by ML-7, an inhibitor of myosin light chain kinase (MLCK). We conclude that initial adherence of MDCK cells to a collagen I substratum is mediated by peripheral actin filaments and adhesion complexes regulated by MLCK but not by stress fibers and adhesion complexes controlled by RhoA. focal complexes; focal adhesions; epithelial adhesion; stress fibers; Rho-kinase  相似文献   

18.
Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.  相似文献   

19.
Thy-1, a cell adhesion molecule abundantly expressed in mammalian neurons, binds to a beta(3)-containing integrin on astrocytes and thereby stimulates the assembly of focal adhesions and stress fibers. Such events lead to morphological changes in astrocytes that resemble those occurring upon injury in the brain. Extracellular matrix proteins, typical integrin ligands, bind to integrins and promote receptor clustering as well as signal transduction events that involve small G proteins and cytoskeletal changes. Here we investigated the possibility that the cell surface protein Thy-1, when interacting with a beta(3)-containing integrin on astrocytes, could trigger signaling events similar to those generated by extracellular matrix proteins. DI-TNC(1) astrocytes were stimulated with Thy-1-Fc immobilized on beads, and increased RhoA activity was confirmed using an affinity precipitation assay. The effect of various inhibitors on the cellular response was also studied. The presence of Y-27632, an inhibitor of Rho kinase (p160ROCK), a key downstream effector of RhoA, significantly reduced focal adhesion and stress fiber formation induced by Thy-1. Similar effects were obtained when astrocytes were treated with C3 transferase, an inhibitor of RhoA. Alternatively, astrocytes were transfected with an expression vector encoding fusion proteins of enhanced green fluorescent protein with either the Rho-binding domain of Rhotekin, which blocks RhoA function, or the dominant-negative N19RhoA mutant. In both cases, Thy-1-induced focal adhesion formation was inhibited. Furthermore, we observed that RhoA activity after stimulation with soluble Thy-1-Fc molecule was augmented upon further cross-linking using protein A-Sepharose beads. The same was shown by cross-linking beta(3)-containing integrin with anti-beta(3) antibodies. Together, these results indicate that Thy-1-mediated astrocyte stimulation depended on beta(3) integrin clustering and the resulting increase in RhoA activity.  相似文献   

20.
The pathogenic yersiniae inject proteins directly into eukaryotic cells that interfere with a number of cellular processes including phagocytosis and inflammatory-associated host responses. One of these injected proteins, the Yersinia protein kinase A (YpkA), has previously been shown to affect the morphology of cultured eukaryotic cells as well as to localize to the plasma membrane following its injection into HeLa cells. Here it is shown that these activities are mediated by separable domains of YpkA. The amino terminus, which contains the kinase domain, is sufficient to localize YpkA to the plasma membrane while the carboxyl terminus of YpkA is required for YpkAs morphological effects. YpkAs carboxyl-terminal region was found to affect the levels of actin-containing stress fibers as well as block the activation of the GTPase RhoA in Yersinia-infected cells. We show that the carboxyl-terminal region of YpkA, which contains sequences that bear similarity to the RhoA-binding domains of several eukaryotic RhoA-binding kinases, directly interacts with RhoA as well as Rac (but not Cdc42) and displays a slight but measurable binding preference for the GDP-bound form of RhoA. Surprisingly, YpkA binding to RhoA(GDP) affected neither the intrinsic nor guanine nucleotide exchange factor-mediated GDP/GTP exchange reaction suggesting that YpkA controls activated RhoA levels by a mechanism other than by simply blocking guanine nucleotide exchange factor activity. We go on to show that YpkAs kinase activity is neither dependent on nor promoted by its interaction with RhoA and Rac but is, however, entirely dependent on heat-sensitive eukaryotic factors present in HeLa cell extracts and fetal calf serum. Collectively, our data show that YpkA possesses both similarities and differences with the eukaryotic RhoA/Rac-binding kinases and suggest that the yersiniae utilize the Rho GTPases for unique activities during their interaction with eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号