首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmid DNA carrying either the nitrate reductase (NR) gene or the argininosuccinate lyase gene as selectable markers and the correspondingChlamydomonas reinhardtii mutants as recipient strains have been used to isolate regulatory mutants for nitrate assimilation by insertional mutagenesis. Identification of putative regulatory mutants was based on their chlorate sensitivity in the presence of ammonium. Among 8975 transformants, two mutants, N1 and T1, were obtained. Genetic characterization of these mutants indicated that they carry recessive mutations at two different loci, namedNrg1 andNrg2. The mutation in N1 was shown to be linked to the plasmid insertion. Two copies of the nitrate reductase plasmid, one of them truncated, were inserted in the N1 genome in inverse orientation. In addition to the chlorate sensitivity phenotype in the presence of ammonium, these mutants expressed NR, nitrite reductase and nitrate transport activities in ammonium-nitrate media. Kinetic constants for ammonium (14C-methylammonium) transport, as well as enzymatic activities related to the ammonium-regulated metabolic pathway for xanthine utilization, were not affected in these strains. The data strongly suggest thatNrg1 andNrg2 are regulatory genes which specifically mediate the negative control exerted by ammonium on the nitrate assimilation pathway inC. reinhardtii.  相似文献   

2.
Summary Spontaneous chlorate-resistant (CR) mutants have been isolated from Chlamydomonas reinhardtii wildtype strains. Most of them, 244, were able to grow on nitrate minimal medium, but 23 were not. Genetic and in vivo complementation analyses of this latter group of mutants indicated that they were defective either at the regulatory locus nit-2, or at the nitrate reductase (NR) locus nit-1, or at very closely linked loci. Some of these nit-1 or nit-2 mutants were also defective in pathways not directly related to nitrate assimilation, such as those of amino acids and purines. Chlorate treatment of wild-type cells resulted in both a decrease in cell survival and an increase in mutant cells resistant to a number of different chemicals (chlorate, methylammonium, sulphanilamide, arsenate, and streptomycin). The toxic and mutagenic effects of chlorate in minimal medium were not found when cells were grown either in darkness or in the presence of ammonium, conditions under which nitrate uptake is drastically inhibited. Chlorate was also able to induce reversion of nit mutants of C. reinhardtii, but failed to produce His + revertants or Arar mutants in the BA-13 strain of Salmonella typhimurium. In contrast, chlorate treatment induced mutagenesis in strain E1F1 of the phototrophic bacterium Rhodobacter capsulatus. Genetic analyses of nitrate reductase-deficient CR mutants of C. reinhardtii revealed two types of CR, to low (1.5 mM) and high (15 mM) chlorate concentrations. These two traits were recessive in heterozygous diploids and segregated in genetic crosses independently of each other and of the nit-1 and nit-2 loci. Three her loci and four lcr loci mediating resistance to high (HC) and low (LC) concentrations of chlorate were identified. Mutations at the nit-2 locus, and deletions of a putative locus for nitrate transport were always epistatic to mutations responsible for resistance to either LC or HC. In both nit + and nit chlorate-sensitive (CS) strains, nitrate and nitrite gave protection from the toxic effect of chlorate. Our data indicate that in C. reinhardtii chlorate toxicity is primarily dependent on the nitrate transport system and independent of the existence of an active NR enzyme. At least seven loci unrelated to the nitrate assimilation pathway and mediating CR are thought to control indirectly the efficiency of the nitrate transporter for chlorate transport. In addition, chlorate appears to be a mutagen capable of inducing a wide range of mutations unrelated to the nitrate assimilation pathway.  相似文献   

3.
4.
5.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

6.
7.
To clarify the role of the fungal nitrate assimilation pathway in nitrate reduction by mycorrhizal plants, nitrate reductase (NR)-deficient (NR) mutants of the ectomycorrhizal basidiomycete Hebeloma cylindrosporum Romagnesi have been selected. These mutants were produced by u.v. mutagenesis on protoplasts originating from homokaryotic mycelia belonging to complementary mating types of this heterothallic tetrapolar species. Chlorate-resistant mutants were first selected in the presence of different nitrogen (N) sources in the culture medium. Among 1495 chlorate resistant mycelia, 30 failed to grow on nitrate and lacked a detectable NR activity. Growth tests on different N sources suggested that the NR activity of all the different mutants is specifically impaired as a result of mutations in either the gene coding for NR apoprotein or genes controlling the synthesis of the molybdenum cofactor. Furthermore, restoration of NR activity in some of the dikaryons obtained after crosses between the different mutant mycelia suggested that not all the selected mutations mapped in the same gene. Utilization of N on a NH415NO3 medium was studied for two mutant strains and their corresponding wild-type homokaryons. None of the mutants could use nitrate whereas 15N enrichment values indicated that 13–27% of N present in 13-d-old wild-type mycelia originated from nitrate. Apparently, the mutant mycelia do not compensate their inability to use nitrate by a more efficient use of ammonium. These different NR mutants still form mycorrhizas with the habitual host plant, Pinus pinaster (Ait.), making them suitable for study of the contribution of the fungal nitrate assimilation pathway to nitrate assimilation by mycorrhizal plants.  相似文献   

8.
9.
Two new nitrate reductase-deficient mutants from Chlamydomonas reinhardtii have been genetically and biochemically characterized. Both H1 and F23 mutants carry single recessive allelic mutations that map at a new locus designated nit-7. This locus is unlinked to the other six nit loci related to the nitrate assimilation pathway in C. reinhardtii. Both mutant alleles H1 and F23 lack an active molybdopterin cofactor, the activity of which is restored neither in vitro nor in vivo by high concentrations of molybdate. Nitrate reductase subunits in these mutants seem to assemble, although not in a stable form, in a high molecular weight complex and, as in other molybdenum cofactor-defective mutants of C. reinhardtii, they cannot reconstitute nitrate reductase activity with an active molybdenum cofactor source from extracts of ammonium-grown cells. The results suggest that nit-7 mutants are defective in molybdopterin biosynthesis. They do produce some precursor(s) that are capable of binding to nitrate reductase subunits.  相似文献   

10.
A study of nitrate and chlorate uptake by Arabidopsis thaliana was made with a wildtype and two mutant types, both mutants having been selected by resistance to high chlorate concentrations. All plants were grown on a nutrient solution with nitrate and/or ammonium as the nitrogen source. Uptake was determined from depletion in the ambient solution. Nitrate and chlorate were able to induce their own uptake mechanisms. Plants grown on ammonium nitrate showed a higher subsequent uptake rate of nitrate and chlorate than plants grown on ammonium alone. Mutant B25, which has no nitrate reductase activity, showed higher rates of nitrate and chlorate uptake than the wildtype, when both types were grown on ammonium nitrate. Therefore, the uptake of nitrate is not dependent on the presence of nitrate reductase. Nitrate has a stimulating effect on nitrate and chlorate uptake, whereas some product of nitrate and ammonium assimilation inhibits uptake of both ions by negative feedback. Mutant B 1, which was supposed to have a low chlorate uptake rate, also has disturbed uptake characteristics for nitrate.  相似文献   

11.
The two enzymes involved in the assimilatory pathway of nitrate in Azotobacter vinelandii are corregulated. Nitrate reductase and nitrite reductase are inducible by nitrate and nitrite. Ammonium represses induction by nitrate of both reductases. Repression by ammonium is higher in media containing 2-oxo-glutarate as carbon source than in media containing sucrose. Mutants in the gene ntrC lost nitrate and nitrite reductase simultaneously. Ten chlorate-resistant mutants with a new phenotype were isolated. In media without ammonium they had a normal phenotype, being sensitive to the toxic effect of chlorate. In media containing low ammonium concentrations they were resistant to chlorate. These mutants seem to be affected in the repression of nitrate and nitrite reductases by ammonium.  相似文献   

12.
Nitrate Utilization by Nitrate Reductase-deficient Barley Mutants   总被引:6,自引:5,他引:1       下载免费PDF全文
Warner RL 《Plant physiology》1981,67(4):740-743
Two nitrate reductase-deficient barley mutants were studied for growth on nitrate and ammonium sources of nitrogen and for resistance to chlorate. Although nitrate reductase-deficient mutants in some species are chlorate-resistant (unable to reduce chlorate to chlorite), the barley mutants used in these studies when grown on nitrate and treated with chlorate were only slightly more resistant to chlorate than the control. When grown to maturity on vermiculite supplemented with either nitrate or ammonium nutrient solutions, the mutants produced as much dry weight and reduced nitrogen per plant as the control. The in vivo and in vitro nitrate reductase activities in the roots and shoots of the mutants grown on nitrate were consistently less than 10% of the control. To avoid the possibility that the mutants received reduced nitrogen from microbial sources, excised embryos were cultured under sterile conditions. Again the mutants were capable of growth and reduced nitrogen accumulation with nitrate as the sole source of nitrogen. In spite of the low apparent nitrate reductase activity, the nitrate reductase-deficient mutants are capable of substantial nitrate reduction.  相似文献   

13.
Summary It had previously been held that chlorate is not itself toxic, but is rendered toxic as a result of nitrate reductase-catalysed conversion to chlorite. This however cannot be the explanation of chlorate toxicity in Aspergillus nidulans, even though nitrate reductase is known to have chlorate reductase activity. Among other evidence against the classical theory for the mechanism of chlorate toxicity, is the finding that not all mutants lacking nitrate reductase are clorate resistant. Both chlorate-sensitive and resistant mutants lacking nitrate reductase, also lack chlorate reductase. Data is presented which implicates not only nitrate reductase but also the product of the nirA gene, a positive regulator gene for nitrate assimilation, in the mediation of chlorate toxicity. Alternative mechanisms for chlorate toxicity are considered. It is unlikely that chlorate toxicity results from the involvement of nitrate reductase and the nirA gene product in the regulation either of nitrite reductase, or of the pentose phosphate pathway. Although low pH has an effect similar to chlorate, chlorate is not likely to be toxic because it lowers the pH; low pH and chlorate may instead have similar effects. A possible explanation for chlorate toxicity is that it mimics nitrate in mediating, via nitrate reductase and the nirA gene product, a shut-down of nitrogen catabolism. As chlorate cannot act as a nitrogen source, nitrogen starvation ensures.  相似文献   

14.
15.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

16.
Abstract The wild-type strain Rhodobacter sphaeroides DSM 158 is a nitrate-reducing bacterium with a periplasmic nitrate reductase. Addition of chlorate to the culture medium causes a stimulation of the phototrophic growth, indicating that this strain is able to use chlorate as an ancillary oxidant. Several mutant strains of R. sphaeroides deficient in nitrate reductase activity were obtained by transposon Tn5 mutagenesis. Mutant strain NR45 exhibited high constitutive nitrate and chlorate reductase activities and phototrophic growth was also increased by the presence of chlorate. In contrast, the stimulation of growth by chlorate was not observed in mutant strains NR8 and NR13, in which transposon Tn5 insertion causes the simultaneous loss of both nitrate and chlorate reductase activities. Tn5 insertion probably does not affect molybdenum metabolism since NR8 and NR13 mutants exhibit both xanthine dehydrogenase and nitrogenase activities. These results that a single enzyme could reduce both nitrate and chlorate in R. sphaeroides DSM 158.  相似文献   

17.
In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities.  相似文献   

18.
The herbicide chlorate has been used extensively to isolate mutants that are defective in nitrate reduction. Chlorate is a substrate for the enzyme nitrate reductase (NR), which reduces chlorate to the toxic chlorite. Because NR is a substrate (NO3)-inducible enzyme, we investigated the possibility that chlorate may also act as an inducer. Irrigation of ammonia-grown Arabidopsis plants with chlorate leads to an increase in NR mRNA in the leaves. No such increase was observed for nitrite reductase mRNA following chlorate treatment; thus, the effect seems to be specific to NR. The increase in NR mRNA did not depend on the presence of wild-type levels of NR activity or molybdenum-cofactor, as a molybdenum-cofactor mutant with low levels of NR activity displayed the same increase in NR mRNA following chlorate treatment. Even though NR mRNA levels were found to increase after chlorate treatment, no increase in NR protein was detected and the level of NR activity dropped. The lack of increase in NR protein was not due to inactivation of the cells' translational machinery, as pulse labeling experiments demonstrated that total protein synthesis was unaffected by the chlorate treatment during the time course of the experiment. Chlorate-treated plants still retain the capacity to make functional NR because NR activity could be restored by irrigating the chlorate-treated plants with nitrate. The low levels of NR protein and activity may be due to inactivation of NR by chlorite, leading to rapid degradation of the enzyme. Thus, chlorate treatment stimulates NR gene expression in Arabidopsis that is manifested only at the mRNA level and not at the protein or activity level.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号