首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
Creating native‐species‐rich grasslands to replace agricultural grasslands can be an important strategy for supplementing the area of grasslands, which are in decline in many regions. In the northeastern United States, sandplain grasslands support a diverse plant community and rare plant and animal species that are declining because of reductions in historical disturbances such as fire and grazing. We designed an experiment on Martha's Vineyard, Massachusetts, to test methods of establishing native‐species‐rich coastal sandplain grassland on former agricultural land. We tested the efficacy of: (1) tilling, herbicide, hot foam, and plastic cover in removing initial nonnative vegetation, and (2) combinations of tilling and seeding for establishing native species. We measured native and nonnative species richness and percent cover before and for 5 years after treatment. Herbicide, plastic cover, and spring, summer, and fall tilling were about equally effective in reducing nonnative species cover and promoting native species cover. Tilling and seeding each increased native species richness and percent cover, and seeding and tilling together increased native species richness and cover more than either treatment alone. Combined seeding and disturbance also reduced the cover of nonnative species, but nonnative species cover remained higher than in adjacent reference sandplain grassland. Results indicated that native species establishment was enhanced by the availability of seeds and by reduction of initial nonnative plant cover. The most efficient method of converting coastal agricultural grasslands to sandplain grassland with a higher number and proportion of native species is a single season of plant removal and seeding.  相似文献   

2.
在对永久样地连续5 年定位观测的基础上,应用Shannon 物种多样性和均匀度指数,研究了雾灵山落叶阔叶林采伐前后更新苗木、草本植物和灌木群落的物种多样性、群落均匀度和种群动态变化.结果表明,在林分采伐后的4 年内,迹地上苗木的物种多样性和群落均匀度指数均高于伐前林分.从无到有并迅速繁衍的树种为山杨,伐前林分中有林木存在,但迹地上缺乏幼苗的树种为油松.灌木的物种多样性和均匀度指数呈增加趋势.始终处于优势的树种为锦带花和胡枝子,后期迅速繁衍的树种为山楂叶悬钩子.草本植物的物种多样性和群落均匀度指数均是在林分采伐后第3 年达到最大值,第4 年开始下降.主要草本植物种群的动态变化可归纳为8 种类型.阳性植物充分发育,阴性或耐荫植物逐渐衰退,是草本植物种群最明显的表现.  相似文献   

3.
Afforestation and fire exclusion are pervasive threats to tropical savannas. In Brazil, laws limiting prescribed burning hinder the study of fire in the restoration of Cerrado plant communities. We took advantage of a 2017 wildfire to evaluate the potential for tree cutting and fire to promote the passive restoration of savanna herbaceous plant communities after destruction by exotic tree plantations. We sampled a burned pine plantation (Burned Plantation); a former plantation that was harvested and burned (Harvested & Burned); an unburned former plantation that was harvested, planted with native trees, and treated with herbicide to control invasive grasses (Native Tree Planting); and two old-growth savannas which served as reference communities. Our results confirm that herbaceous plant communities on post-afforestation sites are very different from old-growth savannas. Among post-afforestation sites, Harvested & Burned herbaceous communities were modestly more similar in composition to old-growth savannas, had slightly higher richness of savanna plants (3.8 species per 50-m2), and supported the greatest cover of native herbaceous plants (56%). These positive trends in herbaceous community recovery would be missed in assessments of tree cover: whereas canopy cover in the Harvested & Burned site was 6% (less than typical of savannas of the Cerrado), the Burned Plantation and Native Tree Planting supported 34% and 19% cover, respectively. By focusing on savanna herbaceous plants, these results highlight that tree cutting and fire, not simply tree planting and fire exclusion, should receive greater attention in efforts to restore savannas of the Cerrado.  相似文献   

4.
Disturbances of the soil and the tree canopy are crucial factors determining the diversity, composition and biomass of the herbaceous layer in forests. This study presents a detailed account of ground vegetation in permanent plots surveyed before and after invasion of wild boar (Sus scrofa) to a temperate deciduous broadleaf forest. Specifically, we aimed to quantify the effect of wild boar rooting on cover, richness and composition of spring ephemerals, summer green herbs and saplings of woody species in relation to tree canopy cover. Rooting frequency in sample plots increased from 0% in 2010 to 61% in 2013. In heavily rooted plots, the mean cover of spring ephemeral geophytes (mainly Anemone nemorosa, A. ranunculoides and Ranunculus ficaria) decreased from 75% to 39% between 2010 and 2013. Species richness of summer green herbs generally increased between 2010 and 2013 and was additionally positively affected by heavy rooting and low canopy cover. Rooting also caused heterogenization of the herbaceous layer and amplified ongoing compositional changes induced by changing light conditions. Frequency and richness of spring ephemeral and woody species remained unchanged. We conclude that overall species richness of the herbaceous layer may increase in the short‐term as a result of increased plant recruitment and seed dispersal. However, wild boar rooting can greatly reduce the ground cover of spring ephemerals in eutrophic broadleaf forests, thereby threatening their important ecological function. To avoid long‐term losses of characteristic spring flora elements, local population control of wild boar is necessary to reduce abundance and frequency of soil rooting.  相似文献   

5.
Floret  C.  Galan  M. J.  Le Floc'h  E.  Romane  F. 《Plant Ecology》1992,(1):97-105
Holm oak (Quercus ilex L.) forest is one of the most widespread biocoenoses in the southern part of France. Until recently, clearcutting of wood for domestic use was carried out every 20 years or so in these coppice stands. In order to study coppice stand dynamics after cutting this paper presents results of observations of some items describing the vegetation structure, the floral composition, and the life cycles in a holm oak coppice stand during a six year period after clearcutting. One of the questions addressed in this study was whether these coppice stands reach a steady state based on auto-succession, or if they continue to change. The results of the floristic changes after cutting suggest that the model of auto-succession best fits with the vegetation dynamics, even if changes in the density and life cycles of herbaceous species still exist six years after clearcutting.  相似文献   

6.
Porensky LM  Veblen KE 《Oecologia》2012,168(3):749-759
Spatial heterogeneity in woody cover affects biodiversity and ecosystem function, and may be particularly influential in savanna ecosystems. Browsing and interactions with herbaceous plants can create and maintain heterogeneity in woody cover, but the relative importance of these drivers remains unclear, especially when considered across multiple edaphic contexts. In African savannas, abandoned temporary livestock corrals (bomas) develop into long-term, nutrient-rich ecosystem hotspots with unique vegetation. In central Kenya, abandoned corral sites persist for decades as treeless ‘glades’ in a wooded matrix. Though glades are treeless, areas between adjacent glades have higher tree densities than the background savanna or areas near isolated glades. The mechanisms maintaining these distinctive woody cover patterns remain unclear. We asked whether browsing or interactions with herbaceous plants help to maintain landscape heterogeneity by differentially impacting young trees in different locations. We planted the mono-dominant tree species (Acacia drepanolobium) in four locations: inside glades, far from glades, at edges of isolated glades and at edges between adjacent glades. Within each location, we assessed the separate and combined effects of herbivore exclusion (caging) and herbaceous plant removal (clearing) on tree survival and growth. Both caging and clearing improved tree survival and growth inside glades. When herbaceous plants were removed, trees inside glades grew more than trees in other locations, suggesting that glade soils were favorable for tree growth. Different types of glade edges (isolated vs. non-isolated) did not have significantly different impacts on tree performance. This represents one of the first field-based experiments testing the separate and interactive effects of browsing, grass competition and edaphic context on savanna tree performance. Our findings suggest that, by excluding trees from otherwise favorable sites, both herbaceous plants and herbivores help to maintain functionally important landscape heterogeneity in African savannas.  相似文献   

7.
Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition) would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak decline.  相似文献   

8.
In this article we report the results of an experiment introducing 17 native shrub and tree species into a Brazilian restinga (i.e., coastal sandy plain vegetation). Restingas have been affected by human impact for about 8,000 years, and human occupation for housing, tourism, and land speculation has recently increased in such a way that there is a need for conservation of remnant patches and restoration of degraded areas throughout the coast to protect biodiversity. Our study site is a remnant located in Rio de Janeiro, the second largest city in the country, and has been subjected in the past to deforestation, man‐made fire, and sand extraction. Although trees and shrubs predominantly compose natural restinga vegetation, local vegetation after impact was replaced by an exotic grass cover, which meant a drastic reduction in species richness. Thus, in this experiment we removed the grass cover, introduced shrub and tree species, and monitored survival and growth of 20 plants per species for 2 years. Despite the adversities imposed by the nutrient‐poor sandy soil, 70% of the species showed high survival percentage and considerable growth. This report on restoration initiatives in the restingas points out the viability of shrub and tree plantation following exotic grass removal as a strategy to restore Brazilian coastal vegetation.  相似文献   

9.

In temperate oak forests in Ohio, USA, we examined variability in forest communities within containment treatment sites for oak wilt (Bretziella fagacearum), a fungal pathogen lethal to susceptible oak species. Containment treatments included quarantine lines in soil for limiting belowground fungal spread and sanitation cutting of 1–3 mature black oak (Quercus velutina) trees within oak wilt infection patches. At 28 sites, we compared tree structure and understory plant communities across a gradient of 1- to 6-year-old treatments and reference forest (untreated and without evidence of oak wilt). While oak seedlings were abundant, oak saplings (1–10 cm in diameter) were absent. In contrast, many native understory plant community measures were highest in oak wilt treatments. Plant species richness 100 m?2 doubled in treatments, regardless of age, compared with reference forest. Plant cover increased with treatment age, with 6-year-old treatments exhibiting 5?×?more cover than reference forest. Non-native plants averaged only a small proportion (<?0.12) of cover across treatments and reference forest. Variability in understory communities was mostly predictable using treatment age, tree canopy cover, and geographic location, as 20 of 25 understory measures had at least 72% of their variance modeled. While oak wilt treatments did not facilitate oak regeneration nor many conservation-priority species of open savanna-woodland habitats, the treatments did diversify and increase cover of native understory communities with minimal invasion of non-native plants.

  相似文献   

10.
Extensive land clearing in many parts of the global tropics is a major threat to biodiversity, and strategies are urgently needed to reinstate forest. Tree planting is a commonly used strategy to rapidly restore forest to degraded landscapes. However, tree planting is expensive, and in most cases financial constraints prevent its use at a scale needed to address the ongoing legacy of land clearing. Here, we conduct a quantitative review of literature from the global tropics and evaluate outcomes of less intensive interventions (i.e. non‐planting) aimed at stimulating natural regeneration of forest. We focus specifically on overcoming barriers to native plant regeneration that predominate in the earliest stages of succession. Common interventions include varied strategies to suppress herbaceous vegetation (e.g. cutting or herbicide treatment), and measures to bolster propagule supply (e.g. direct seeding and artificial bird perches). There was an apparent trend among pair‐wise comparisons of effect sizes to suggest that combined interventions to simultaneously suppress herbaceous vegetation and increase propagule supply resulted in the most consistent outcomes in terms of promoting progress toward restoring forest structure. Despite an obvious demand for lower cost interventions, a paucity of information means that it is still premature to generalize outcomes of specific interventions and their overall cost relative to active tree planting. Nevertheless, we report an increase in research effort in this area, and suggest promising directions to accelerate progress that will improve capacity to select optimal, cost effective strategies that achieve long‐term restoration objectives with a particular level of certainty .  相似文献   

11.
Royo AA  Carson WP 《Oecologia》2005,145(1):66-75
Mammals are hypothesized to either promote plant diversity by preventing competitive exclusion or limit diversity by reducing the abundance of sensitive plant species through their activities as browsers or disturbance agents. Previous studies of herbivore impacts in plant communities have focused on tree species and ignored the herbaceous community. In an experiment in mature-phase, tropical moist forest sites in central Panamá, we studied the impact of excluding ground-dwelling mammals on the richness and abundance of herbs in 16, 30×45-m plots. Within each plot, we censused the herbaceous community in 28, 2×2-m subplots (1,792 m2 total area sampled). We identified over 54 species of herbs averaging 1.21 ramets m−2 and covering approximately 4.25% of the forest floor. Excluding mammals for 5 years had no impact on overall species richness. Within exclosures, however, there was a significant two-fold increase in the density of rare species. Overall herbaceous density and percent cover did not differ between exclosures and adjacent control plots, although cover did increase over time. Mammalian exclusion significantly increased the total cover of three-dominant herb species, Pharus latifolius, Calathea inocephala, and Adiantum lucidum, but did not affect their density. This study represents one of the most extensive herbaceous community censuses conducted in tropical forests and is among a few that quantify herbaceous distribution and abundance in terms of both density and cover. Additionally, this work represents the first community level test of mammalian impacts on the herbaceous community in a tropical forest to date. Our results suggest that ground dwelling mammals do not play a key role in altering the relative abundance patterns of tropical herbs in the short term. Furthermore, our results contrast sharply with prior studies on similar temporal and spatial scales that demonstrate mammals strongly alter tree seedling composition and reduce seedling density. Thus, we question the pervasiveness of top–down control on tropical plant communities and the paradigm that defaunation will inexorably lead to widespread, catastrophic shifts in plant communities.  相似文献   

12.
We investigated some of the factors influencing exotic invasion of native sub‐alpine plant communities at a site in southeast Australia. Structure, floristic composition and invasibility of the plant communities and attributes of the invasive species were studied. To determine the plant characteristics correlated with invasiveness, we distinguished between roadside invaders, native community invaders and non‐invasive exotic species, and compared these groups across a range of traits including functional group, taxonomic affinity, life history, mating system and morphology. Poa grasslands and Eucalyptus‐Poa woodlands contained the largest number of exotic species, although all communities studied appeared resilient to invasion by most species. Most community invaders were broad‐leaved herbs while roadside invaders contained both herbs and a range of grass species. Over the entire study area the richness and cover of native and exotic herbaceous species were positively related, but exotic herbs were more negatively related to cover of specific functional groups (e.g. trees) than native herbs. Compared with the overall pool of exotic species, those capable of invading native plant communities were disproportionately polycarpic, Asteracean and cross‐pollinating. Our data support the hypothesis that strong ecological filtering of exotic species generates an exotic assemblage containing few dominant species and which functionally converges on the native assemblage. These findings contrast with those observed in the majority of invaded natural systems. We conclude that the invasion of closed sub‐alpine communities must be viewed in terms of the unique attributes of the invading species, the structure and composition of the invaded communities and the strong extrinsic physical and climatic factors typical of the sub‐alpine environment.  相似文献   

13.
This study describes diversity patterns in the flora of the Campo-Ma’an rain forest, in south Cameroon. In this area, the structure and composition of the forests change progressively from the coastal forest on sandy shorelines through the lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis, to the submontane forest at higher elevations and the mixed evergreen and semi-deciduous forest in the drier Ma’an area. We tested whether there is a correlation between tree species diversity and diversity of other growth forms such as shrubs, herbs, and lianas in order to understand if, in the context of African tropical rain forest, tree species diversity mirrors the diversity of other life forms or strata. Are forests that are rich in tree species also rich in other life forms? To answer this question, we analysed the family and species level floristic richness and diversity of the various growth forms and forest strata within 145 plots recorded in 6 main vegetation types. A comparison of the diversity within forest layers and within growth forms was done using General Linear Models. The results showed that tree species accounted for 46% of the total number of vascular plant species with DBH ≥1 cm, shrubs/small trees 39%, climbers 14% and herbs less than 1%. Only 22% of the diversity of shrubs and lianas could be explained by the diversity of large and medium sized trees, and less than 1% of herb diversity was explained by tree diversity. The shrub layer was by far the most species rich, with both a higher number of species per plot, and a higher Shannon diversity index, than the tree and the herb layer. More than 82% of tree species, 90% of shrubs, 78% of lianas and 70% of herbaceous species were recorded in the shrub layer. Moreover, shrubs contributed for 38% of the 114 strict and narrow endemic plant species recorded in the area, herbs 29%, trees only 20% and climbers 11%. These results indicate that the diversity of trees might not always reflect the overall diversity of the forest in the Campo-Ma’an area, and therefore it may not be a good indicator for the diversity of shrubs and herbaceous species. Furthermore, this suggests that biodiversity surveys based solely on large and medium sized tree species (DBH ≥0cm) are not an adequate method for the assessment of plant diversity because other growth form such as shrubs, climbers and herbs are under-represented. Therefore, inventory design based on small plots of 0.1 ha, in which all vascular plants with DBH ≥1 cm are recorded, is a more appropriate sampling method for biodiversity assessments than surveys based solely on large and medium sized tree species.  相似文献   

14.
Ponderosa pine forest restoration consists of thinning trees and reintroducing prescribed fire to reduce unnaturally high tree densities and fuel loads to restore ecosystem structure and function. A current issue in ponderosa pine restoration is what to do with the large quantity of slash that is created from thinning dense forest stands. Slash piling burning is currently the preferred method of slash removal because it allows land managers to burn large quantities of slash in a more controlled environment in comparison with broadcast burning slash. However burning slash piles is known to have adverse effects such as soil sterilization and exotic species establishment. This study investigated the effects of slash pile burning on soil biotic and chemical variables and early herbaceous succession on burned slash pile areas. Slash piles were created following tree thinning in two adjacent approximately 20‐ha ponderosa pine (Pinus ponderosa) restoration treatments in the Coconino National Forest near Flagstaff, Arizona. We selected 30 burned slash pile areas and sampled across a gradient of the burned piles for arbuscular mycorrhizal (AM) propagule densities, the soil seed bank, and soil chemical properties. In addition, we established five 1‐m2 plots in each burned pile to quantify the effect of living soil (AM inoculum) and seeding amendments on early herbaceous succession in burned slash pile areas. The five treatments consisted of a control (no treatment), living soil (AM inoculum) amendment, sterilized soil (no AM inoculum) amendment, seed amendment, and a seed/soil (AM inoculum) amendment. Slash pile burning nearly eliminated populations of viable seeds and AM propagules and altered soil chemical properties. Amending scars with native seeds increased the cover of native forbs and grasses. Furthermore adding both seed and living soil more than doubled total native plant cover and decreased ruderal and exotic plant cover. These results indicate that seed/soil amendments that increase native forbs and grasses may enhance the rate of succession in burned slash pile areas by allowing these species to outcompete exotic and ruderal species also establishing at the site through natural regeneration.  相似文献   

15.
The decline in species‐rich grasslands across the United States has increased the importance of conservation and restoration efforts to preserve the biodiversity supported by these habitats. Abandoned agricultural fields often provide practical locations for the reestablishment of species‐rich grasslands. However, these fields often retain legacies of agriculture both in their soils, which may have higher pH and nitrogen (N) contents than soils that were never farmed, and in their plant communities, which are dominated by non‐native species and poor in native seed stock. We considered methods of reversing these legacies to create native‐species‐rich grassland on former agricultural land. We tested seeding and tilling combined with additions of sulfur (S), carbon (C), N or water to establish diverse sandplain grassland vegetation on an old field on Martha's Vineyard, Massachusetts. We measured soil pH, extractable nitrate and ammonium, and total and native species richness and native species cover for 5 years after treatment. S additions lowered pH to values typical of never‐tilled sandplain ecosystems and increased native species cover, but had no effect on species richness. C, N, and water additions had no significant effects on the soil or vegetation. Seeding and tilling were more effective at restoring native species richness than any soil amendments and indicated a greater importance of biotic factors compared with soil conditions in promoting sandplain vegetation establishment. S amendment accelerated establishment of native species cover for several years but the effect of S additions compared with seeding and tilling alone declined over time.  相似文献   

16.
海南岛的外来植物   总被引:13,自引:0,他引:13  
通过对海南岛野生或半野生外来入侵植物的调查,报道了153种外来植物,并对近年来在海南岛大面积分布而未报道过的入侵种进行简要介绍。对海南外来植物种类组成、原产地、生活型与危害程度的分析发现:(1)外来植物中有66.67%来自美洲,美洲种的96%为热带美洲成分,几乎所有来自美洲的草本植物往往成为遍布海南各地农田、果园、胶林、草地的有害杂草;(2)外来草本与藤本植物具有较强的入侵能力和较大的危害;(3)绝大多数草本与藤本植物常形成单一优势群落,破坏平地、低丘陵原有的生态系统。  相似文献   

17.
Early post-fire vegetation dynamics following large, severe forest fires are largely unknown for the southern California mountains owing to historic fire suppression. Vegetation in 38 forest stands was surveyed (2004, 2005, and 2007) following the 2003 Cedar Fire in the Cuyamaca Mountains, Peninsular Ranges, San Diego County, California, USA. Each stand was sampled using four 10-m radius plots for the tree stratum, and 20 1-m2 quadrats for shrub and herb strata. Changes in canopy cover by species, origin (native and exotic) and life form were analyzed. 2007 data were subjected to clustering to examine the divergence in species composition of the stands with time. Shrub cover increased from 3 to 31%, and exotic herbaceous cover increased from 3 to 40%. Cover of native annuals had increased from 2004 (17%) to 2005 (33%), but then dropped to 15% in 2007. Forty percent of the stands were dominated by the shrub species Ceanothus palmeri, and associated with higher pre-fire conifer cover and fire severity. More than 50% of the stands were dominated by exotic annuals and associated with lower fire severity and less steep slopes. The remaining stands (<10%) were dominated by chaparral shrubs and occurred on lower elevation, steep west-facing slopes. Species traits predict their dynamics following disturbance, as environmental conditions change. Establishment and increasing abundance of species dependent on dispersal to reach a site, including exotic and native herbaceous species, occurred in years 2–4. Differences among stands in species composition 4 years post-fire were associated with topographic and fire severity gradients.  相似文献   

18.
Fire suppression has altered the uplands of northern Mississippi (U.S.A.). Once blanketed by open oak woodlands, this region is now experiencing mesophytic tree invasion, canopy closure, reduced oak regeneration, and herbaceous understory loss. In an attempt to reestablish historical conditions, experimental restoration was initiated through thinning and burning treatments. Our study, part of a comprehensive monitoring effort, is the first to examine the impact of oak woodland restoration on the spider community and associated habitat structure. Samples measuring a variety of environmental variables and utilizing an array of spider collecting techniques were taken within four habitats located at the restoration site: fire‐suppressed forest, moderately treated forest, intensely treated forest, and old field. Two main conclusions resulted from this study. (1) Open‐habitat specialists responded positively to increased canopy openness regardless of the availability of herbaceous vegetation. (2) Woodland restoration increased spider diversity, perhaps through the formation of diverse habitat structure and/or by altering species dominance patterns. A rise in open‐habitat specialist diversity was observed as treatment intensity increased, with no compensatory reduction in the diversity of forest specialists. What remains to be seen is whether the continued transition to open woodland habitat will result in losses of forest specialist species. More aggressive overstory tree thinning is currently being administered to encourage the growth of herbaceous grasses and forbs, which will permit future tests of a hypothesized decline in forest specialists.  相似文献   

19.
Sea level rise elicits short‐ and long‐term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014–2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%–117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long‐term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re‐shaping the unique coastal landscape of the Big Bend.  相似文献   

20.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号