首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls.  相似文献   

2.
To test whether baboons are capable of implementing selective brain cooling, we measured, every 5 min, the temperature in their hypothalamus, carotid arterial bloodstream, and abdominal cavity. The baboons were unrestrained and exposed to 22 degrees C for 7 days and then to a cyclic environment with 15 degrees C at night and 35 degrees C during the day for a further 7 days. During the latter 7 days some of the baboons also were exposed to radiant heat during the day. For three days, during heat exposure, water was withheld. At no time was the hypothalamus cooler than carotid arterial blood, despite brain temperatures above 40 degrees C. With little variation, the hypothalamus was consistently 0.5 degrees C warmer than arterial blood. At high body temperatures, the hypothalamus was sometimes cooler than the abdomen. Abdominal temperature was more variable than arterial blood and tended to exceed arterial blood temperature at higher body temperatures. Hypothalamic temperature cooler than a warm abdomen is not evidence for selective brain cooling. In species that can implement selective brain cooling, the brain is most likely to be cooler than carotid arterial blood when an animal is hyperthermic, during heat exposure, and also dehydrated and undisturbed by human presence. When we exposed baboons to high ambient temperatures while they were water deprived and undisturbed, they never implemented selective brain cooling. We conclude that baboons cannot implement selective brain cooling and can find no convincing evidence that any primate species can do so.  相似文献   

3.
Euhydrated and dehydrated subjects exercised in a hot and a cold environment with our aim to identify factors that relate to reductions in stroke volume (SV). We hypothesized that reductions in SV with heat stress are related to the interaction of several factors rather than the effect of elevated skin blood flow. Eight male endurance-trained cyclists [maximal O(2) consumption (VO(2 max)) 4.5 +/- 0.1 l/min; means +/- SE] cycled for 30 min (72% VO(2 max)) in the heat (H; 35 degrees C) or the cold (C; 8 degrees C) when euhydrated or dehydrated by 1.5, 3.0, or 4.2% of their body weight. When euhydrated, SV and esophageal temperature (T(es) 38. 2-38.3 degrees C) were similar in H and C, whereas skin blood flow was much higher in H vs. C (365 +/- 64% higher; P < 0.05). With each 1% body weight loss, SV declined 6.4 +/- 1.3 ml (4.8%) in H and 3.4 +/- 0.4 ml (2.5%) in C, whereas T(es) increased 0.21 +/- 0.02 and 0. 10 +/- 0.02 degrees C in H and C, respectively (P < 0.05). However, reductions in SV were not associated with increases in skin blood flow. The reduced SV was highly associated with increased heart rate and reduced blood volume in both H (R = 0.96; P < 0.01) and C (R = 0. 85; P < 0.01). In conclusion, these results suggest that SV is maintained in trained subjects during exercise in euhydrated conditions despite large differences in skin blood flow. Furthermore, the lowering of SV with dehydration appears largely related to increases in heart rate and reductions in blood volume.  相似文献   

4.
The degree of variability in the temperature difference between the brain and carotid arterial blood is greater than expected from the presumed tight coupling between brain heat production and brain blood flow. In animals with a carotid rete, some of that variability arises in the rete. Using thermometric data loggers in five sheep, we have measured the temperature of arterial blood before it enters the carotid rete and after it has perfused the carotid rete, as well as hypothalamic temperature, every 2 min for between 6 and 12 days. The sheep were conscious, unrestrained, and maintained at an ambient temperature of 20-22 degrees C. On average, carotid arterial blood and brain temperatures were the same, with a decrease in blood temperature of 0.35 degrees C across the rete and then an increase in temperature of the same magnitude between blood leaving the rete and the brain. Rete cooling of arterial blood took place at temperatures below the threshold for selective brain cooling. All of the variability in the temperature difference between carotid artery and brain was attributable statistically to variability in the temperature difference across the rete. The temperature difference between arterial blood leaving the rete and the brain varied from -0.1 to 0.9 degrees C. Some of this variability was related to a thermal inertia of the brain, but the majority we attribute to instability in the relationship between brain blood flow and brain heat production.  相似文献   

5.
Measurements of rectal temperature (Tre), water lost by evaporation (Eresp) and drooling, cardiac output (CO), and common carotid blood flow (CCBF) were made in dogs (mean hydrated wt 31.0 +/- 1.5 kg) running for 1 h on a level treadmill at 7.5 km/h at an ambient temperature of 25 degrees C. Each animal was studied when it was hydrated ad libitum and when it had been dehydrated by removal of drinking water until 9-10% of the initial body weight had been lost. Dehydrated exercising animals had significantly higher Tre and lower rates of Eresp, CO, and CCBF. Tre and Eresp were measured in seven animals. Average Tre during running was 39.11 +/- 0.10 degrees C in hydrated and 39.80 +/- 0.25 degrees C in dehydrated animals (P less than 0.01). Average Eresp during running was 3.9 +/- 0.3 g/min in hydrated animals and 2.3 +/- 0.3 g/min in dehydrated animals (P less than 0.01). Average CO during exercise, measured in five animals, was 11.1 +/- 0.7 1/min in the hydrated state and 8.6 +/- 0.5 1/min in the dehydrated state (P less than 0.01). Unilateral CCBF during exercise, measured in four animals, was 602 +/- 40 ml/min in the hydrated state and 418 +/- 22 ml/min in the dehydrated state (P less than 0.01). Water lost by drooling in seven exercising animals was 41.5 +/- 11 g/h when they were hydrated and 0.6 +/- 0.4 g/h when they were dehydrated. It is concluded that dehydrated dogs doing mild exercise can save water by reducing Eresp and regulating body temperature above hydrated levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This is a study on the effect of cooling and heating amniotic fluid on blood flow to fetal tissues and organs. In 8 unanaesthetized, chronically-catheterised fetal sheep (129-137 days gestation) cold or warm water was passed through tubing encircling the fetus in utero and blood flow was measured using the radionuclide-labelled 15 mu spheres. Following cooling for 30 min, amniotic fluid temperature fell 9.6 degrees C to 29.9 +/- 2.1 degrees C (SEM) fetal arterial temperature fell 2.37 degrees C to 37.30 +/- 0.36, and maternal arterial temperature fell 0.53 degrees C to 38.58 +/- 0.16. Blood flow through the fetal skin fell 60% (P less than 0.01) to 13.6 ml/min per 100 g tissue. Blood flow to the brown fat increased 186% (P less than 0.05) to 99.6 ml/min per 100 g. Following warming for 20 min, fetal temperature rose to 40.43 +/- 0.19 degrees C, and skin blood flow did not change significantly relative to initial control period but rose 200% above that during cooling (P less than 0.01). During both cooling and heating, blood flow to the adrenals rose significantly (P less than 0.05) whereas flow to the carcass, brain, kidneys, and placenta was not altered detectably. Continuous sampling of blood from the inferior vena cava during microsphere injection failed to detect any evidence of arterio-venous shunting through the skin at any temperature studied. Overall, the blood flow responses are consistent with a thermoregulatory role for the skin and brown fat in the near-term fetal sheep.  相似文献   

7.
We examined the effects of active dehydration by exercise in a hot, humid environment on anaerobic muscular power using a test-retest (euhydrated and dehydrated) design. Seven subjects (age, 27.1 +/- 4.6 years; mass, 86.4 +/- 9.5 kg) performed upper and lower body Wingate anaerobic tests prior to and after a 1.5-hour recovery from a heat stress trial of treadmill exercise in a hot, humid environment (33.1 +/- 3.1C = 55.1 +/- 8.9% relative humidity) until a 3.1 +/- 0.3% body mass loss was achieved. Dehydration was confirmed by a significant body mass loss (P < 0.001), urine color increase (P = 0.004), and urine specific gravity increase (P = 0.041). Motivation ratings were not significantly different (P = 0.059), and fatigue severity was significantly (P = 0.009) increased 70% in the dehydrated compared to the euhydrated condition. Compared to the euhydrated condition, the dehydrated condition mean power was significantly (P = 0.014) decreased 7.17% in the upper body and 19.20% in the lower body. Compared to the euhydrated condition, the dehydrated condition peak power was significantly (P = 0.013) decreased 14.48% in the upper body and 18.36% in the lower body. No significant differences between the euhydrated and dehydrated conditions were found for decrease in power output (P = 0.219, power = 0.213). Our findings suggest that dehydration of 2.9% body mass decreases the ability to generate upper and lower body anaerobic power. Coaches and athletes must understand that sports performance requiring anaerobic strength and power can be impaired by inadequate hydration and may contribute to increased susceptibility to musculoskeletal injury.  相似文献   

8.
To investigate the role of the angularis oculi vein (AOV) in selective brain cooling (SBC), we measured brain and carotid blood temperatures in six adult female Dorper sheep. Halfway through the study, a section of the AOV, just caudal to its junction with the dorsal nasal vein, was extirpated on both sides. Before and after AOV surgery, the sheep were housed outdoors at 21-22°C and were exposed in a climatic chamber to daytime heat (40°C) and water deprivation for 5 days. In sheep outdoors, SBC was significantly lower after the AOV had been cut, with its 24-h mean reduced from 0.25 to 0.01°C (t(5) = 3.06, P = 0.03). Carotid blood temperature also was lower (by 0.28°C) at all times of day (t(5) = 3.68, P = 0.01), but the pattern of brain temperature was unchanged. The mean threshold temperature for SBC was not different before (38.85 ± 0.28°C) and after (38.85 ± 0.39°C) AOV surgery (t(5) =0.00, P = 1.00), but above the threshold, SBC magnitude was about twofold less after surgery. SBC after AOV surgery also was less during heat exposure and water deprivation. However, SBC increased progressively by the same magnitude (0.4°C) over the period of water deprivation, and return of drinking water led to rapid cessation of SBC in sheep before and after AOV surgery. We conclude that the AOV is not the only conduit for venous drainage contributing to SBC in sheep and that, contrary to widely held opinion, control of SBC does not involve changes in the vasomotor state of the AOV.  相似文献   

9.
This study determined whether marked hyperthermia alone or in combination with dehydration reduces the initial rate of rise in O(2) consumption (VO(2) on-kinetics) and the maximal rate of O(2) uptake (VO(2 max)) during intense cycling exercise. Six endurance-trained male cyclists completed four maximal cycle ergometer exercise tests (402 +/- 4 W) when euhydrated or dehydrated (4% body wt) with normal (starting esophageal temperature, 37.5 +/- 0.2 degrees C; mean skin temperature, approximately 31 degrees C) or elevated (+1 and +6 degrees C, respectively) thermal strain. In the euhydrated and normal condition, subjects reached VO(2 max) (4.7 +/- 0.2 l/min) in 228 +/- 34 s, with a mean response time of 42 +/- 2 s, and fatigued after 353 +/- 39 s. Hyperthermia alone or in combination with dehydration reduced mean response time (17-23%), VO(2 max) (16%), and performance time (51-53%) (all P < 0.01) but did not alter the absolute response time (i.e., the time to reach 63% response in the control trial, 3.2 +/- 0.1 l/min, 42 s). Reduction in VO(2 max) was accompanied by proportional decline in O(2) pulse and significantly elevated maximal heart rate (195 vs. 190 beats/min for hyperthermia vs. normal). Preventing hyperthermia in dehydrated subjects restored VO(2 max) and performance time by 65 and 50%, respectively. These results demonstrate that impaired high-intensity exercise performance with marked skin and internal body hyperthermia alone or in combination with dehydration is not associated with a diminished rate of rise in VO(2) but decreased VO(2 max).  相似文献   

10.
Selective brain cooling (SBC) is defined as the lowering of brain temperature below arterial blood temperature. Artiodactyls employ a carotid rete, an anatomical heat exchanger, to cool arterial blood shortly before it enters the brain. The survival advantage of this anatomy traditionally is believed to be a protection of brain tissue from heat injury, especially during exercise. Perissodactyls such as horses do not possess a carotid rete, and it has been proposed that their guttural pouches serve the heat-exchange function of the carotid rete by cooling the blood that traverses them, thus protecting the brain from heat injury. We have tested this proposal by measuring brain and carotid artery temperature simultaneously in free-living horses. We found that despite evidence of cranial cooling, brain temperature increased by about 2.5 degrees C during exercise, and consistently exceeded carotid temperature by 0.2-0.5 degrees C. We conclude that cerebral blood flow removes heat from the brain by convection, but since SBC does not occur in horses, the guttural pouches are not surrogate carotid retes.  相似文献   

11.
Selective brain cooling (SBC) is defined as a brain temperature cooler than the temperature of arterial blood from the trunk. Surrogate measures of arterial blood temperature have been used in many published studies on SBC. The use of a surrogate for arterial blood temperature has the potential to confound proper identification of SBC. We have measured brain, carotid blood, and rectal temperatures in conscious sheep exposed to 40, 22, and 5 degrees C. Rectal temperature was consistently higher than arterial blood temperature. Brain temperature was consistently cooler than rectal temperature during all exposures. Brain temperature only fell below carotid blood temperature during the final few hours of 40 degrees C exposure and not at all during the 5 degrees C exposure. Consequently, using rectal temperature as a surrogate for arterial blood temperature does not provide a reliable indication of the status of the SBC effector. We also show that rapid suppression of SBC can result if the animals are disturbed.  相似文献   

12.
Rats euhydrated or dehydrated for four days were given intracerebroventricular insulin once daily in a dose of 100 ng (not affecting blood sugar level). In euhydrated rats, insulin decreased significantly the neurohypophysial vasopressin content. In dehydrated animals the neurohypophysial content depleted by deprivation of water could be further reduced by intracerebroventricular treatment with insulin. These results may suggest a possible regulatory role of brain insulin in the mechanisms of vasopressin release.  相似文献   

13.
This study examined the effects of hypohydration on plasma volume and red cell volume during rest in a comfortable (20 degrees C, 40% relative humidity) and exercise in a hot-dry (49 degrees C, 20% relative humidity) environment. A group of six male and six female volunteers [matched for maximal O2 uptake (VO2 max)] completed two test sessions following a 10-day heat acclimation program. One test session was completed when subjects were euhydrated and the other when subjects were hypohydrated (-5% from base-line body wt). The test sessions consisted of rest for 30 min in a 20 degrees C antechamber, followed by two 25-min bouts of treadmill walking (approximately 30% of VO2 max) in the heat, interspersed by 10 min of rest. No significant differences were found between the genders for the examined variables. At rest, hypohydration elicited a 5% decrease in plasma volume with less than 1% change in red cell volume. During exercise, plasma volume increased by 4% when subjects were euhydrated and decreased by 4% when subjects were hypohydrated. These percent changes in plasma volume values were significantly (P less than 0.01) different between the euhydration and hypohydration tests. Although red cell volume remained fairly constant during the euhydration test, these values were significantly (P less than 0.01) lower when hypohydrated during exercise. We conclude that hydration level alters vascular fluid shifts during exercise in a hot environment; hemodilution occurs when euhydrated and hemoconcentration when hypohydrated during light intensity exercise for this group of fit men and women.  相似文献   

14.
To determine if rectal temperature is an adequate index of brain temperature during changing thermal conditions, we measured rectal, cerebral cortical, and carotid arterial blood temperatures simultaneously during whole body cooling in adult cats. The mean steady state rectal, brain and carotid arterial temperatures at the onset of cooling were: 39.2 +/- 0.2, 38.5 +/- 0.2, and 38.3 +/- 0.3 degrees C, respectively. Rectal temperature decreased faster than both brain and arterial blood, while only a small temperature difference was observed between brain and arterial blood, brain always exceeding blood. Rectal temperature cannot be considered an adequate index of brain temperature. Carotid arterial temperature is a better estimate of brain temperature.  相似文献   

15.
To study their thermal responses to climatic stress, we implanted seven greater kudu (Tragelaphus strepsiceros) with intra-abdominal, brain, carotid, and subcutaneous temperature data loggers, as well as an activity logger. Each animal was also equipped with a collar holding a miniature black globe thermometer, which we used to assess thermoregulatory behavior. The kudu ranged freely within succulent thicket vegetation of the Eastern Cape Province, South Africa. The kudu spontaneously developed a bacterial pneumonia and consequent fever that lasted between 6 and 10 days. The fever was characterized by a significant increase in mean 24-h abdominal temperature from 38.9 +/- 0.2 degrees C to 40.2 +/- 0.4 degrees C (means +/- SD, t(6) = 11.01, P < 0.0001), although the amplitude of body temperature rhythm remained unchanged (t(6) = 1.18, P = 0.28). Six of the kudu chose warmer microclimates during the fever than when afebrile (P < 0.0001). Despite the selection of a warmer environment, on the first day of fever, the abdominal-subcutaneous temperature difference was significantly higher than on afebrile days (t(5) = 3.06, P = 0.028), indicating vasoconstriction. Some kudu displayed increased frequency of selective brain cooling during the fever, which would have inhibited evaporative heat loss and increased febrile body temperatures, without increasing the metabolic maintenance costs of high body temperatures. Average daily activity during the fever decreased to 60% of afebrile activity (t(6) = 3.46, P = 0.014). We therefore have recorded quantitative evidence for autonomic and behavioral fever, as well as sickness behavior, in the form of decreased activity, in a free-living ungulate species.  相似文献   

16.
Heat loss from the human head during exercise   总被引:2,自引:0,他引:2  
Evaporative and convective heat loss from head skin and expired air were measured in four male subjects at rest and during incremental exercise at 5, 15, and 25 degrees C ambient temperature (Ta) to verify whether the head can function as a heat sink for selective brain cooling. The heat losses were measured with an open-circuit method. At rest the heat loss from head skin and expired air decreased with increasing Ta from 69 +/- 5 and 37 +/- 18 (SE) W (5 degrees C) to 44 +/- 25 and 26 +/- 7 W (25 degrees C). At a work load of 150 W the heat loss tended to increase with increasing Ta: 119 +/- 21 (head skin) and 82 +/- 5 W (respiratory tract) at 5 degrees C Ta to 132 +/- 27 and 103 +/- 12 W at 25 degrees C Ta. Heat loss was always higher from the head surface than from the respiratory tract. The heat losses, separately and together (total), were highly correlated to the increasing esophageal temperature at 15 and 25 degrees C Ta. At 5 degrees C Ta on correlation occurred. The results showed that the heat loss from the head was larger than the heat brought to the brain by the arterial blood during hyperthermia, estimated to be 45 W per 1 degree C increase above normal temperature, plus the heat produced by the brain, estimated to be up to 20 W. The total heat to be lost is therefore approximately 65 W during a mild hyperthermia (+1 degrees C) if brain temperature is to remain constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purpose of this study was to test the hypothesis that the rise in colonic temperature (Tc) during nonexertional heat stress is exaggerated in senescent (SEN, 24 mo, n = 12) vs. mature (MAT, 12 mo, n = 15) conscious unrestrained Fischer 344 rats. On 2 separate days (48 h apart) each SEN and MAT animal was exposed to an ambient temperature (Ta) of 42 degrees C (relative humidity 20%) until a Tc of 41 degrees C was attained and then cooled at a Ta of 26 degrees C until Tc returned to the initial control level. Control Tc was similar in the two groups for both trials. The rate of Tc change during heating was 63% greater (0.070 +/- 0.005 vs. 0.043 +/- 0.004 degrees C/min, P less than 0.05) and the time to 41 degrees C reduced by 36% (54 +/- 6 vs. 85 +/- 10 min, P less than 0.05) in MAT vs. SEN animals during the first exposure, although the cooling rate was slower in the MAT (0.048 +/- 0.004 degrees C/min) vs. SEN (0.062 +/- 0.006 degrees C/min) animals (P less than 0.05). The heating rate was unchanged in MAT animals between trials 1 and 2. However, SEN animals had a 95% increase in heating rate in trial 2 compared with trial 1 (P less than 0.05), and the corresponding time to 41 degrees C was decreased by 44% (P less than 0.05). As a result, rate of heating and time to 41 degrees C were similar in the two groups during trial 2. The cooling rate was similar between trials within each group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study was conducted to determine whether hypohydration (Hy) alters blood flow, skin temperature, or cold-induced vasodilation (CIVD) during peripheral cooling. Fourteen subjects sat in a thermoneutral environment (27 degrees C) during 15-min warm-water (42 degrees C) and 30-min cold-water (4 degrees C) finger immersion (FI) while euhydrated (Eu) and, again, during Hy. Hy (-4% body weight) was induced before FI by exercise-heat exposure (38 degrees C, 30% relative humidity) with no fluid replacement, whereas during Eu, fluid intake maintained body weight. Finger pad blood flow [as measured by laser-Doppler flux (LDF)] and nail bed (T(nb)), pad (T(pad)), and core (T(c)) temperatures were measured. LDF decreased similarly during Eu and Hy (32 +/- 10 and 33 +/- 13% of peak during warm-water immersion). Mean T(nb) and T(pad) were similar between Eu (7.1 +/- 1.0 and 11.5 +/- 1.6 degrees C) and Hy (7.4 +/- 1.3 and 12.6 +/- 2.1 degrees C). CIVD parameters (e.g., nadir, onset time, apex) were similar between trials, except T(pad) nadir was higher during Hy (10.4 +/- 3.8 degrees C) than during Eu (7.9 +/- 1.6 degrees C), which was attributed to higher T(c) in six subjects during Hy (37.5 +/- 0.2 degrees C), compared with during Eu (37.1 +/- 0.1 degrees C). The results of this study provide no evidence that Hy alters finger blood flow, skin temperature, or CIVD during peripheral cooling.  相似文献   

19.
Chronically catheterised fetal sheep (117-134 days) were cooled in utero via a tubing coil placed around the fetal trunk through which cold water was circulated for one hour. The fetal core temperature was reduced by 5.51 +/- 0.61 degrees C. This hypothermia was associated with tachycardia (P less than 0.001) and hypertension (P less than 0.001) (n = 12). The tachycardia was abolished by treatment with propranolol (n = 4) and the hypertension by treatment with phentolamine (n = 5). Blood flow in the left umbilical artery was measured by an electromagnetic flow probe in 4 fetuses and rose (P less than 0.001) with fetal cooling. The increase in blood flow was abolished by treatment with either phentolamine or propranolol. These observations are consistent with a redistribution of fetal blood flow from peripheral tissues to placental and thermogenic tissues during cooling. Fetal plasma adrenaline and noradrenaline concentrations rose (P less than 0.01) during fetal cooling (n = 5). These studies demonstrate that catecholamine and cardiovascular responses to environmental hypothermia have differentiated prior to birth in the sheep fetus.  相似文献   

20.
The goal of this study was to assess the response of fetal brown fat in vivo to hypothermia and norepinephrine infusion. In 10 unanaesthetized, chronically-prepared fetal sheep (133 +/- 2 days of gestation) cold water was passed through tubing encircling the fetus in utero and plasma glycerol concentration was measured as an indicator of brown fat activity. Following cooling for 60 min, amniotic fluid temperature fell 7.79 degrees C to 31.66 +/- 1.73 degrees C (n = 8, P less than 0.001) and maternal temperature fell 0.63 degree C to 38.63 +/- 0.08 degrees C (n = 9, P less than 0.001). Eight of the fetuses were subjected to a second experiment in which norepinephrine was infused intravenously for 15 min. During infusion fetal arterial temperature fell 0.38 degrees C to 39.05 +/- 0.25 degrees C (n = 7, P less than 0.05). Amniotic fluid temperature (n = 7, NS) and maternal arterial temperature (n = 7, NS) remained constant. Glycerol concentration during the infusion increased from 0.73 to 1.27 mg/dl, a 74% increase over control (n = 8, P less than 0.001). Although clearly detectable, these glycerol responses to hypothermia and norepinephrine stimulation are one-third or less of those achieved after birth, indicating that thermogenesis remains quiescent in the near-term fetal sheep, despite powerful stimuli for activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号