首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea urchin spermatozoa obtain energy for movement through oxidation of endogenous phospholipids, particularly phosphatidylcholine (PC). This study was undertaken to determine the localization of PC available for utilization in energy metabolism in spermatozoa of the sea urchin, Hemicentrotus pulcherrimus. Following incubation with sea water, the PC content in sperm heads decreased significantly, while that in sperm tails did not change. PC was abundant in sperm heads, particularly the midpieces. PC composed of unsaturated fatty acids was consumed to a greater extent during incubation than that consisting of saturated fatty acids. Analysis by gas-liquid chromatography indicated most of fatty acid moieties in the midpieces PC to be unsaturated. Phospholipase A2 activity was also distributed in sperm heads, particularly the midpieces. It thus appears that PC as a substrate for energy metabolism is located in the midpieces of sea urchin spermatozoa.  相似文献   

2.
Sea urchin spermatozoa use endogenous phosphatidylcholine (PC) to produce energy for swimming. The catabolism of PC was studied in Hemicentrotus pulcherrimus spermatozoa. Following incubation in sea water, the content of PC decreased and that of choline increased gradually, whereas phosphocholine maintained a constant level. Measurement of the radioactivity in metabolites converted from 1-palmitoyl-2-[1-14C]linoleoyl-PC, [choline-methyl-14C]dipalmitoyl-PC and 1-[1-14C]palmitoyl-lysophosphatidylcholine (LysoPC) showed that the major degradative pathway is PC----LysoPC----glycerophosphocholine----choline. 1-Palmitoyl-2-[1-14C]linoleoyl-PC and [1-14C]oleic acid were oxidized to 14CO2 in a cell-free system of spermatozoa. Sea urchin spermatozoa thus appear to quite likely obtain energy through the oxidation of fatty acid(s) from PC.  相似文献   

3.
1. Phosphatidylcholine was the predominant phospholipid in bovine corpora lutea; it accounted for about 50% of the total phospholipid phosphorus. Phosphatidylethanolamine (13%) and ethanolamine plasmalogen (8-9%) were the next two major components. 2. After incubation of the tissue with [(32)P]orthophosphate the total radioactivity and specific radioactivity of phosphatidylinositol were higher than those of any other lipid. 3. Luteinizing hormone failed to increase significantly the incorporation of [(32)P]orthophosphate into total phospholipids from luteal tissue slices, but did stimulate progesterone synthesis and lactate production. 4. The proportion of oleate (18:1) in the neutral lipids and phospholipids was higher than that of any other fatty acid. 5. The proportion of unsaturated fatty acid in the tissue lipids exceeded 60%, and almost half of this was polyunsaturated. Arachidonate (20:4), docosatetraenoate (22:4) and docosapentaenoate (22:5) were the principal polyunsaturated fatty acids. 6. After incubation of luteal tissue with [1-(14)C]acetate, the greatest proportion of radioactivity in the fatty acids isolated from the total lipid fraction was in palmitate (16:0) and docosatetraenoate (22:4). Polyunsaturated fatty acids accounted for almost 50% of the (14)C radioactivity incorporated and this pattern was observed in phospholipids, triglycerides and free fatty acids.  相似文献   

4.
1. Evidence has been provided for the transfer of phosphatidyl[14C]choline and [3H]cholesterol between bovine serum albumin and cauda epididymal rat spermatozoa in Krebs-Ringer bicarbonate medium, which can promote sperm capacitation. 2. An analysis of the lipid composition in both albumin and spermatozoa revealed that phospholipid levels decreased in the protein and increased by roughly comparable amounts in sperm cells during incubation in vitro. 3. Cholesterol (free + ester) increased in albumin and decreased in spermatozoa. Changes in the amount of esterified cholesterol were solely responsible for the increase associated with albumin, whereas whole sperm cell extracts showed a significant decline in free cholesterol. 4. The composition of albumin-bound fatty acids did not alter appreciably as a result of incubation with spermatozoa. 5. Rates of [14C]palmitic acid utilization by spermatozoa suggest that lipid synthesis accounted for less than 5% of the changes observed under the conditions of this study. 6. These results are interpreted as broadly supporting our previous proposal that lipid exchange between albumin and sperm cells is implicated in sperm capacitation in vitro. Specifically, the results are compatible with the idea that a decreased cholesterol/phospholipid ratio in the sperm plasma membrane facilitates this transformation.  相似文献   

5.
[1-14-C]Palmitoyl-Co A was incubated with Tetrahymena microsomes containing the complete enzyme system for desaturation during various time periods. The level of [1-14C]palmitoleoyl-CoA increased to a maximum during the 1--3 min incubation time, while [1-14C]palmitoleic acid in the phospholipid reached a maximum level during 6--7 min incubation time. The radioactivity of [1-14C]palmitoleic acid in free fatty acid and the triglyceride fraction was not significantly observed upon 3 min incubation. Incubation of [1-14C]palmitoyl-CoA with microsomes in the absence of NADH produced [1-14C]palmitoyl lipid without desaturation. Radioactive palmitic acids in the microsomal lipids were not converted to palmitoleic acids after addition of NADH by the complete enzyme system. When microsomes prepared from cells labeled with [1-14C]palmitic acid or [1-14C]stearic acid were incubated alone in the presence of O2 and NADH, no significant increase in [1-14C]palmitoleic acid in the phospholipid was observed, wherease an increase in [1-14C]linoleic acid and gamma-[1-14C]linolenic acid did occur at the expense of [1-14C]oleic acid in the phospholipid. From these results it can be concluded that the enzyme involving desaturation of palmitic acid to palmitoleic acid requires palmitoyl-CoA as the substrate. However, the possibility of oleoyl and linoleoyl phospholipids being substrates in the desaturation of Tetrahymena microsomes was suggested.  相似文献   

6.
Myristic acid utilization and processing in BC3H1 muscle cells.   总被引:1,自引:0,他引:1  
Because myristic acid (14:0) is important in regulating cell function, we have studied its utilization in BC3H1 muscle cells. Phosphatidylcholine contained 70-80% of the [9,10-3H]14:0 radioactivity incorporated into the cell phospholipids. In both myoblasts and myocytes, however, large amounts of radioactivity also accumulated in a labile neutral lipid pool consisting mostly of triacylglycerol. Therefore, radioactive lipid products formed when BC3H1 cells labeled with 14:0 are stimulated are not necessarily derived only from phosphatidylcholine. Elongation of [9,10-3H]14:0 occurred rapidly in the myoblasts and myocytes, and extensive desaturation also occurred in the myoblasts. Thus, even after short periods of labeling, substantial amounts of radioactivity are contained in fatty acids other than 14:0. The labeling of proteins with [9,10-3H]myristic acid was generally similar in the myoblasts and myocytes. A number of lipid-soluble, polar radioactive metabolites were released into the medium during incubation of [9,10-3H]14:0 with the cells. [1-14C] 14:0 was not converted to these compounds, indicating that they are chain-shortened 14:0 derivatives. Based on chemical analysis, two of the major products appear to be hydroxylated fatty acids. This oxidation process shows some specificity for 14:0 because similar compounds were not produced from palmitic, oleic, or linoleic acids. The myocytes formed larger amounts of the metabolites than the myoblasts, suggesting that differentiation may increase the activity of this 14:0 oxidative pathway.  相似文献   

7.
Intensity of fatty acids and separate classes of lipids synthesis was studied in vitro in the liver of white rats at loading by cholesterol in the dose of 300 mg/kg once a day during 30 days by incubation of organ homogenate with [6-(14)C] glucose, [2-(14)C] lysine, [1-(14)C] palmitic acid with following determination of radioactivity of fatty acids, phospholipids, cholesterol, acylglycerols radioactivity was investigated. The inhibition of fatty acids and separate classes of lipids synthesis in vitro in the liver of white rats at loading by cholesterol at the use of [6-(14)C] of glucose and [2-(14)C] lysine, as predecessors of fatty acids and lipids and stimulation of lipids synthesis at the use of [1-(14)C] palmitic acid as the predecessor was established. The loading of white rats by cholesterol results in its synthesis inhibition in the liver during incubation of its homogenates with [6-(14)C] glucose and does not influence the cholesterol synthesis during incubation of homogenates with [2-(14)C] lysine and [1-(14)C] palmitic acid. Thus synthesis of fatty acids and their use in the phospholipids and acylglycerols synthesis in the liver of white rats with hypercholesterolemia sharply decreases during incubation of their homogenates with [6-(14)C] glucose and [2-(14)C] lysine, and the synthesis of cholesterol, phospholipids and acylglycerols - increases during incubation with [1-(14)C] palmitic acid.  相似文献   

8.
Energy metabolism in spermatozoa of the sea urchin Glyptocidaris crenularis was examined. The spermatozoa contained not only several kinds of phospholipids and cholesterol but also triacylglycerides (TG). Following dilution of the dry sperm in sea water, the TG content decreased rapidly. Other lipids, however, remained at constant levels, except for an increase in the level of free fatty acid. Oil red-O staining of spermatozoa showed that TG was principally located in part of the sperm midpiece. Also, high lipase activity was demonstrated in the spermatozoa. In both intact cells and a cell-free system, 14C-labeled fatty acids were oxidized to 14CO2. It is thus concluded that G. crenularis spermatozoa use TG as a substrate for energy metabolism.  相似文献   

9.
The synthesis of very long chain (C24 to C36) polyunsaturated (four, five and six double bonds) fatty acids (VLCPUFA) is investigated in bovine retina using [14C]acetate. Saturates on the one hand (mainly palmitate), and polyenes on the other (mainly VLCPUFA), incorporate most of the label found in lipids. Phosphatidylcholine (PC) is the most highly labelled lipid class, since both types of 14C-labelled fatty acids, but especially this novel series of VLCPUFA, are concentrated in this phospholipid. Radioactivity from [14C]acetate is found in very long chain tetra, penta and hexaenoic fatty acids of PC. The labelling of 20:4(n - 6), 20:5(n - 3), 22:5(n - 6) and 22:6(n - 3) is much lower than that of longer polyenes of each of these series, indicating that VLCPUFA are synthesized in situ by successive elongations of the above polyenes, pre-existing in retina lipids. In various subcellular fractions isolated from retinas after incubations with [14C]acetate (including cytosol, microsomes, mitochondria and photoreceptor membranes), the labelling of the VLCPUFA of PC is very high, even at relatively short intervals of incubation. The results suggest that not only the synthesis but also the intracellular traffic among membranes of VLCPUFA-containing species of PC are very active processes in the retina.  相似文献   

10.
1. The relationship between the rate of [1-14C] acetate incorporation into the fatty acids of renal papillary lipids and the acetate concentration in the medium has been measured. 2. [1-14C] acetate was incorporated mainly into fatty acids of phospholipids and triacylglycerols. Only a few per cent of the radioactivity was found in the free fatty acid fraction. 3. The major part of the [1-14C] acetate was found to be incorporated by a chain elongation of prevalent fatty acids. The major component of the poly-unsaturated fatty acids in triacylglycerols and the major product of fatty acid synthesis from [1-14C] acetate in vitro was demonstrated by mass spectrometry to be docosa-7,10,13,16-tetraenoic acid. 4. The radioactivity of docosa-7,10,13,16-tetraenoic acid accounted for 40% of total radioactivity in triacylglycerol fatty acids (lipid droplet fraction) and 20% of total radioactivity in membrane phospholipid fatty acids.  相似文献   

11.
Energy metabolism in spermatozoa of the sea urchin Diadema setosum of the order Diadematoida was examined. The spermatozoa contained not only several kinds of phospholipids and cholesterol, but also triglyceride (TG). Glycogen and glucose were present at extremely low levels. Following dilution of dry sperm and incubation in seawater, the TG content decreased rapidly. Other lipids, however, remained at constant levels, except for a slight increase in the level of free fatty acid. High lipase activity was demonstrated in the spermatozoa. 14C-labeled fatty acid was oxidized to 14CO2. Ultrastructural study also showed that lipid globules were present at the bottom of the midpiece. After incubation in seawater, morphological changes in the lipid globules were observed and some vacuoles appeared. Thus, the results obtained strongly suggest that D. setosum spermatozoa obtain energy through oxidation of fatty acid from TG stored in the lipid globules at the midpieces. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn-2 positions of this lipid. Because petroselinic acid is neither synthesized nor further modified on polar lipids, the apparent metabolism of this fatty acid through PC (and possibly through other polar lipids) may define a function of PC in TAG assembly apart from its involvement in fatty acid modification reactions.  相似文献   

13.
The effect of hydroperoxy fatty acids on reactions involved in the acylation-deacylation cycle of synaptic phospholipids was studied in vitro, using nerve ending fraction isolated from rat forebrain. 15-Hydroperoxyeicosatetraenoic acid (15-HPETE), 13-hydroperoxylinoleic acid (13-HP 18: 2), and hydroperoxydocosahexaenoic acid (22:6 Hpx), at 25 microM final concentration, all inhibited the incorporation of [1-14C]arachidonate into synaptosomal phosphatidylinositol (PI), phosphatidylcholine (PC), and triacylglycerides by 50-80%. The lowest effective concentration of 15-HPETE and 13-HP 18:2 resulting in significant inhibition of the reacylation of PI was 5 microM, whereas the inhibition of [1-14C]arachidonate incorporation into PC required 10 and 5 microM hydroperoxy fatty acids, respectively. Cumene hydroperoxide and tert-butyl hydroperoxide at concentrations of 100 microM did not inhibit reacylation of PI and PC. Synthesis of labeled arachidonoyl-CoA from [1-14C]arachidonate was decreased by about 50% by 25 microM hydroperoxy fatty acids both in synaptosomes and in the microsomal fraction. Use of [1-14C]arachidonoyl-CoA as a substrate, to bypass the fatty acid activation reaction, revealed that activity of acyltransferase was not affected significantly by 25 microM 15-HPETE and 13-HP 18:2. At the same time, however, the hydrolysis of labeled arachidonoyl-CoA was substantially enhanced. Exposure of synaptosomes to 25 microM fatty acid hydroperoxides did not affect significantly the endogenous concentrations of five major free fatty acids. It is concluded that (1) among synaptic phospholipids, reacylation of PI and PC is the most susceptible to the inhibitory action of fatty acid hydroperoxides, and (2) the enzymes affected by these compounds in nerve endings are arachidonoyl-CoA synthetase and hydrolase.  相似文献   

14.
The influence of saturated and unsaturated fatty acid ethanolamides as well as Δ9-tetrahydrocannabinol (Δ9-THC), WIN 55,212-2 and cannabinoid CB1 receptor antagonist SR 141716 on sea urchin fertilization was studied. The ethanolamides of arachidonic, oleic and linoleic acids but not saturated fatty acid (C14–C20) derivatives inhibited fertilization when pre-incubated with sperm cells. Δ9-THC and WIN 55,212-2 also inhibited fertilization, Δ9-THC being ten times as potent as WIN 55,212-2. Selective cannabinoid CB1 receptor antagonist SR 141716 also blocked fertilization and did not antagonize the action of Δ9-THC. The obtained results indicate that different unsaturated fatty acid ethanolamides may control sea urchin fertilization, and that sea urchin sperm cell cannabinoid receptor may differ from the known cannabinoid receptor subtypes.  相似文献   

15.
Phospholipids and fatty acids analyses were carried out on brush-border membranes isolated from trout intestine. Phosphatidylcholine (PC) is the principal phospholipid of these membranes. When animals are transferred from fresh water to sea water, the content of the 22:6(n ? 3) fatty acid strongly increases at the level of phospholipids, mainly PC. Concomitantly, an important increase in the fluidity of the lipid core of the membrane was detected by steady-state fluorescence anisotropy. It is suggested that the molecular species of PC (especially rich in n ? 3 fatty acids) may have an important part to play in marine organisms according to the osmoregulation problems met in these animals.  相似文献   

16.
Maternal and fetal plasma concentrations of free fatty acids, triacylglycerols and phospholipids and the profile of their fatty acids were measured in three catheterized and unanaesthetized sheep. Fetal concentrations of all three lipid fractions were low and did not correlate with maternal concentrations. There were no measurable umbilical venous-arterial differences. Linoleic acid concentrations were low in both mother and fetus. The fatty acid composition of fetal adipose tissue, liver, lung and cerebellum of five animals was analysed. Again linoleic acid levels were very low, but phospholipids contained 2-8% arachidonic acid. [14C] linoleic acid and [3H] palmitic acid were infused intravenously into three ewes. Only trace amounts of labelled fatty acids were found in fetal plasma and these were confined to the free fatty acids. 14C-label was incorporated into fetal tissue lipids, but most of this probably was due to fetal lipid synthesis from [14C] acetate or other water-soluble products of maternal [14C] linoleic acid catabolism. It is concluded that only trace amounts of fatty acids cross the sheep placenta. They are derived mainly from the maternal plasma free fatty acids and might just be sufficient to be the source of the small amounts of essential fatty acids found in the lamb fetus, but are insignificant in terms of energy supply or lipid storage.  相似文献   

17.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

18.
Exogenous fluorescent phosphatidic acid (PA) and phosphatidylcholine (PC) were transported into lipid bodies in an oleaginous fungus, Mortierella ramanniana var. angulispora [Kamisaka et al. (1999) Biochim. Biophys. Acta 1438, 185-198]. We further investigated the processes of fluorescent PA and PC transport into lipid bodies in this fungus by changing culture conditions. Lowering incubation temperature decreased lipid body labeling by 1-palmitoyl, 2-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-PA (C5-DMB-PA), but fluorescence did not accumulate in organelles other than lipid bodies. C5-DMB-PC transport into lipid bodies was blocked at temperatures below 15 degrees C and fluorescence accumulated in intracellular membranes, presumably endoplasmic reticulum membranes. The low-temperature block of C5-DMB-PC transport enabled us to do pulse-chase experiments in which fungal cells were pulse-labeled at 15 degrees C with C5-DMB-PC and chased at 30 degrees C. The results clearly depicted transport of C5-DMB-PC and its derivatives from intracellular membranes to lipid bodies. Transport was temperature-dependent and ATP-dependent, although microtubules and actin filaments were not substantially involved. Experiments using 14C-labeled fatty acids and glycerol instead of C5-DMB-PC under the same conditions suggested that transport depicted by fluorescence agreed with metabolism and transport of PC containing native fatty acids. Furthermore, the transport mechanism preferred PC containing unsaturated fatty acids such as linoleic acid. This study dissect lipid transport of PA and PC into lipid bodies and reveal regulatory steps for lipid body formation in this fungus.  相似文献   

19.
We have investigated pathways of lipid metabolism in boar spermatozoa sperm cells incubated for up to 3 days with [14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid or incorporated these precursors into diglycerides and/or phospholipids. When spermatozoa were incubated with [14C]palmitic acid or [14C]glycerol, there was first an incorporation into phosphatidic acid, followed by labelling of 1,2-diacylglycerol (DAG) and then phosphatidyl-choline (PC). This indicates that the de novo pathway of phospholipid synthesis is active in these cells. However, not all DAG was converted to PC. A pool of di-saturated DAG, which represented a considerable proportion of the high basal levels of DAG, accumulated the majority of label. Another DAG pool, containing saturated fatty acids in position 1 and unsaturated fatty acids in position 2 and representing the remaining basal DAG, was in equilibrium with PC. When spermatozoa were incubated with [14C]arachidonic acid, there was a considerable incorporation of label into PC, which indicates the presence of an active deacylation/reacylation cycle. The behaviour of certain lipid pools varied depending on the temperature at which spermatozoa were incubated. For example, in the presence of [14C]palmitic acid or [14C]arachidonic acid, there was more incorporation of label into PC when spermatozoa were incubated at 25°C than when incubated at 17°C. Taken together, these results indicate that spermatozoa have an active lipid synthetic capacity. It may therefore be possible to design methods to evaluate the metabolic activity of boar spermatozoa based on the incorporation of lipid precursors under standardized conditions. Mol. Reprod. Dev. 47:105–112, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The elongation of [1-14C]stearoyl-CoA by microsomes from etiolated leek seedlings, in the presence of malonyl-CoA and NADPH, has been studied at different substrate and enzyme concentrations. The HPTLC analysis of the whole reaction mixture, followed by the analysis of the label in the fatty acid methyl esters of long-chain acyl-CoAs, phosphatidylcholine (PC), and neutral lipids, showed that the acyl-CoA fraction contained most of the labeled very-long-chain fatty acids. The very-long-chain fatty acids were rapidly formed and released from the elongase(s) as acyl-CoAs. The label of long-chain acyl-CoAs increased for 20 min and then decreased, whereas it increased in PC. Labeled very-long-chain fatty acids appeared in the neutral lipid + free fatty acid fraction after a 20-min lag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号