首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypercholesterolemia impairs the quantity and function of endothelial progenitor cell. We hypothesized that glycogen synthase kinase 3β activity is involved in regulating biological function of endothelial progenitor cells in hypercholesterolemia microenvironment. For study, endothelial progenitor cells derived from apolipoprotein E-deficient mice fed with high-fat diet were used. Glycogen synthase kinase 3β activity was interfered with glycogen synthase kinase 3β inhibitor lithium chloride or transduced with replication defective adenovirus vector expressing catalytically inactive glycogen synthase kinase 3β (GSK3β-KM). Functions of endothelial progenitor cells, proliferation, migration, secretion and network formation of endothelial progenitor cells were assessed in vitro. The expression of phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 in endothelial progenitor cells was detected by Western blot. The in vivo function re-endothelialization and vasodilation were also analyzed by artery injury model transplanted with glycogen synthase kinase 3β-inhibited endothelial progenitor cells. We demonstrated that while the proliferation, migration, network formation as well as VEGF and NO secretion were impaired in apolipoprotein E-deficient endothelial progenitor cells, glycogen synthase kinase 3β inhibition significantly improved all these functions. Apolipoprotein E-deficient endothelial progenitor cells showed decreased phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 expression, whereas these signals were enhanced by glycogen synthase kinase 3β inhibition and accompanied with β-catenin nuclear translocation. Our in vivo model showed that glycogen synthase kinase 3β inhibition remarkably increased re-endothelial and vasodilation. Taken together, our data suggest that inhibition of glycogen synthase kinase 3β is associated with endothelial progenitor cell biological functions both in vitro and in vivo. It might be an important interference target in hypercholesterolemia microenvironment.  相似文献   

2.
3.
Accurate Notch signalling is critical for development and homeostasis. Fine‐tuning of Notch–ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N‐terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so‐called β1‐2 loop that is involved in phospholipid binding. Mutations in the β1‐2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the β1‐2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss‐of‐function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine‐tuning the balance of trans and cis ligand–receptor interactions.  相似文献   

4.
Synchronization of oocyte maturation in vitro has been shown to produce higher in vitro fertilization (IVF) rates than those observed in oocytes matured in vitro without synchronization. However, the increased IVF rates never exceeded those observed in oocytes matured in vivo without synchronization. This study was therefore designed to define the effect of in vivo synchronization of oocyte maturation on IVF rates. Mice were superovulated and orally treated with 7.5 mg cilostazol (CLZ), a phosphodiesterase 3A (PDE3A) inhibitor, to induce ovulation of immature oocytes at different stages depending on frequency and time of administration of CLZ. Mice treated with CLZ ovulated germinal vesicle (GV) or metaphase I (MI) oocytes that underwent maturation in vitro or in vivo (i.e. in the oviduct) followed by IVF. Superovulated control mice ovulated mature oocytes that underwent IVF directly upon collection. Ovulated MI oocytes matured in vitro or in vivo had similar maturation rates but significantly higher IVF rates, 2–4 cell embryos, than those observed in control oocytes. Ovulated GV oocytes matured in vitro showed similar maturation rates but significantly higher IVF rates than those observed in control oocytes. However, ovulated GV oocytes matured in vivo had significantly lower IVF rates than those noted in control oocytes. It is concluded that CLZ is able to synchronize oocyte maturation and improve IVF rates in superovulated mice. CLZ may be capable of showing similar effects in humans, especially since temporal arrest of human oocyte maturation with other PDE3A inhibitors in vitro was found to improve oocyte competence level. The capability of a clinically approved PDE3A inhibitor to improve oocyte fertilization rates in mice at doses extrapolated from human therapeutic doses suggests the potential scenario of the inclusion of CLZ in superovulation programs. This may improve IVF outcomes in infertile patients.  相似文献   

5.
Coagulansin-A (withanolide) is the steroidal lactone obtained from Withania coagulans which belong to Solanaceae family. The present study investigated the effects of coagulansin-A on bovine oocyte maturation and embryo development in vitro. All these oocytes were aspirated from the ovaries obtained from Korean Hanwoo cows at a local abattoir. To determine whether coagulansin-A has beneficial effects on bovine oocyte maturation in vitro, 355 oocytes per group (control and treated) in seven replicates were subjected with different concentrations (1, 2.5, 5, 7.5 and 10 μM) of coagulansin-A. The coagulansin-A was added in the in vitro maturation (IVM) media followed by in vitro fertilization (IVF) and then in vitro culture (IVC). Only treatment with 5 μM coagulansin-A remarkably (P<0.05) improved embryos development (Day 8 blastocyst) having 27.30 and 40.01% for control and coagulansin-A treated groups respectively. Treatment with 5 μM coagulansin-A significantly induced activation of heat shock protein 70 (HSP70) (P<0.05). Immunofluorescence analysis revealed that 5 μM coagulansin-A treatment also significantly inhibited oxidative stress and inflammation during bovine embryo development in vitro by decreasing 8-oxoguanosine (8-OxoG) (P<0.05) and nuclear factor-κB (NF-κB) (P<0.05). The expressions of HSP70 and NF-κB were also conformed through real-time PCR (RT-PCR). Additionally, the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay confirmed that coagulansin-A treatment significantly improved the embryo quality and reduced bovine embryo DNA damage (P<0.05). The present study provides new information regarding the mechanisms by which coagulansin-A promotes bovine embryo development in vitro.  相似文献   

6.
7.
Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.  相似文献   

8.
LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, plays an important role in the pathogenesis of sepsis and lipid A is known to be essential for its toxicity. Therefore it could be an effective measure to prevent sepsis by neutralizing or destroying LPS. Numerous studies have indicated that many traditional Chinese medicines are natural antagonists of LPS in vitro and in vivo. The goal of this study is to develop a rapid method to screen anti-sepsis components from Chinese herbs by use of a direct lipid A-based affinity biosensor technology based on a resonant mirror. The detergent OG (n-octyl β-D-glucopyranoside) was immobilized on a planar non-derivatized cuvette which provided an alternative surface to bind the terminal hydrophilic group of lipid A. A total of 78 herbs were screened based on the affinity biosensor with a target of lipid A. The aqueous extract of PSA (Paeonia suffruticosa Andr) was found to possess the highest capability of binding lipid A. Therefore an aqueous extraction from this plant was investigated further by our affinity biosensor, polyamide chromatography and IEC–HPLC. Finally, we obtained a component (PSA-I-3) from Paeonia suffruticosa Andr that was evaluated with the affinity biosensor. We also studied the biological activities of PSA-I-3 against sepsis in vitro and in vivo to further confirm the component we screened with the biosensor. In vitro, we found that PSA-I-3 could decrease TNFα (tumour necrosis factor α) release from RAW264.7 cells induced by LPS in a dose-dependent manner. In vivo, it increased remarkably the survival of KM (KunMing) mice by challenging both lethal-dose LPS and heat-killed Escherichia coli compared with control groups. Our results suggest that the constructed affinity biosensor can successfully screen the anti-sepsis component from Chinese herbs.  相似文献   

9.
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.  相似文献   

10.
Functional delivery of mRNA has high clinical potential. Previous studies established that mRNAs can be delivered to cells in vitro and in vivo via RNA-loaded lipid nanoparticles (LNPs). Here we describe an alternative approach using exosomes, the only biologically normal nanovesicle. In contrast to LNPs, which elicited pronounced cellular toxicity, exosomes had no adverse effects in vitro or in vivo at any dose tested. Moreover, mRNA-loaded exosomes were characterized by efficient mRNA encapsulation (∼90%), high mRNA content, consistent size, and a polydispersity index under 0.2. Using an mRNA encoding the red light-emitting luciferase Antares2, we observed that mRNA-loaded exosomes were superior to mRNA-loaded LNPs at delivering functional mRNA into human cells in vitro. Injection of Antares2 mRNA-loaded exosomes also led to strong light emission following injection into the vitreous fluid of the eye or into the tissue of skeletal muscle in mice. Furthermore, we show that repeated injection of Antares2 mRNA-loaded exosomes drove sustained luciferase expression across six injections spanning at least 10 weeks, without evidence of signal attenuation or adverse injection site responses. Consistent with these findings, we observed that exosomes loaded with mRNAs encoding immunogenic forms of the SARS-CoV-2 Spike and Nucleocapsid proteins induced long-lasting cellular and humoral responses to both. Taken together, these results demonstrate that exosomes can be used to deliver functional mRNA to and into cells in vivo.  相似文献   

11.
Mitochondrial functions are crucial for pancreatic β-cell survival and glucose-induced insulin secretion. Hexarelin (Hex) is a synthetic small peptide ghrelin analogue, which has been shown to protect cardiomyocytes from the ischemia-reperfusion process. In this study, we used in vitro and in vivo models of streptozotocin (STZ)-induced β-cell damage to study the protective effect of Hex and the associated mechanisms. We found that STZ produced a cytotoxic effect in a dose- and time-dependent manner in MIN6 cells (a mouse β-cell line). Hex (1.0 μM) decreased the STZ-induced damage in β-cells. Rhodamine 123 assay and superoxide DHE production assay revealed that Hex ameliorated STZ-induced mitochondrial damage and excessive superoxide activity in β-cells. In addition, Hex significantly reduced STZ-induced expression of cleaved Caspases-3, Caspases-9 and the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2 in MIN6 cells. We further examined the in vivo effect of Hex in a rat model of type 1 diabetes induced by STZ injection. Hex ameliorated STZ-induced decrease in plasma insulin and protected the structure of islets from STZ-induced disruption. Hex also ameliorated STZ-induced expression of cleaved Caspase-9 and the Bax in β-cells. In conclusion, our data indicate that Hex is able to protects β-cell mass from STZ-caused cytotoxic effects involving mitochondrial pathways in vitro and in vivo. Hex may serve as a potential protective agent for the management of diabetes.  相似文献   

12.
Liver sinusoidal endothelial cell–derived bone morphogenetic protein 6 (BMP6) and the BMP6–small mothers against decapentaplegic homolog (SMAD) signaling pathway are essential for the expression of hepcidin, the secretion of which is considered the systemic master switch of iron homeostasis. However, there are continued controversies related to the strong and direct suppressive effect of iron on hepatocellular hepcidin in vitro in contrast to in vivo conditions. Here, we directly studied the crosstalk between endothelial cells (ECs) and hepatocytes using in vitro coculture models that mimic hepcidin signaling in vivo. Huh7 cells were directly cocultured with ECs, and EC conditioned media (CM) were also used to culture Huh7 cells and primary mouse hepatocytes. To explore the reactions of ECs to surrounding iron, they were grown in the presence of ferric ammonium citrate and heme, two iron-containing molecules. We found that both direct coculture with ECs and EC-CM significantly increased hepcidin expression in Huh7 cells. The upstream SMAD pathway, including phosphorylated SMAD1/5/8, SMAD1, and inhibitor of DNA binding 1, was induced by EC-CM, promoting hepcidin expression. Efficient blockage of this EC-mediated hepcidin upregulation by an inhibitor of the BMP6 receptor ALK receptor tyrosine kinase 2/3 or BMP6 siRNA identified BMP6 as a major hepcidin regulator in this coculture system, which highly fits the model of hepcidin regulation by iron in vivo. In addition, EC-derived BMP6 and hepcidin were highly sensitive to levels of not only ferric iron but also heme as low as 500 nM. We here establish a hepatocyte–endothelial coculture system to fully recapitulate iron regulation by hepcidin using EC-derived BMP6.  相似文献   

13.
IntroductionStrategies for biological repair and regeneration of the intervertebral disc (IVD) by cell and tissue engineering are promising, but few have made it into a clinical setting. Recombinant human bone morphogenetic protein 7 (rhBMP-7) has been shown to stimulate matrix production by IVD cells in vitro and in vivo in animal models of induced IVD degeneration. The aim of this study was to determine the most effective dose of an intradiscal injection of rhBMP-7 in a spontaneous canine IVD degeneration model for translation into clinical application for patients with low back pain.MethodsCanine nucleus pulposus cells (NPCs) were cultured with rhBMP-7 to assess the anabolic effect of rhBMP-7 in vitro, and samples were evaluated for glycosaminoglycan (GAG) and DNA content, histology, and matrix-related gene expression. Three different dosages of rhBMP-7 (2.5 μg, 25 μg, and 250 μg) were injected in vivo into early degenerated IVDs of canines, which were followed up for six months by magnetic resonance imaging (T2-weighted images, T1rho and T2 maps). Post-mortem, the effects of rhBMP-7 were determined by radiography, computed tomography, and macroscopy, and by histological, biochemical (GAG, DNA, and collagen), and biomolecular analyses of IVD tissue.ResultsIn vitro, rhBMP-7 stimulated matrix production of canine NPCs as GAG deposition was enhanced, DNA content was maintained, and gene expression levels of ACAN and COL2A1 were significantly upregulated. Despite the wide dose range of rhBMP-7 (2.5 to 250 μg) administered in vivo, no regenerative effects were observed at the IVD level. Instead, extensive extradiscal bone formation was noticed after intradiscal injection of 25 μg and 250 μg of rhBMP-7.ConclusionsAn intradiscal bolus injection of 2.5 μg, 25 μg, and 250 μg rhBMP-7 showed no regenerative effects in a spontaneous canine IVD degeneration model. In contrast, intradiscal injection of 250 μg rhBMP-7, and to a lesser extent 25 μg rhBMP-7, resulted in extensive extradiscal bone formation, indicating that a bolus injection of rhBMP-7 alone cannot be used for treatment of IVD degeneration in human or canine patients.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0625-2) contains supplementary material, which is available to authorized users.  相似文献   

14.
NUF2 (NUF2, Ndc80 kinetochore complex component) plays an important role in kinetochore-microtubule attachment. It has been reported that NUF2 is associated with multiple human cancers. However, the functional role of NUF2 in pancreatic cancer remains unclear. In this study, we found that NUF2 expression was stronger in tumour tissues than in normal pancreatic tissues, and its overexpression could be related to poor prognosis. Moreover, NUF2 was highly expressed in several human pancreatic cancer cell lines. We took advantage of lentivirus-mediated siRNA (small interfering RNA) to suppress NUF2 expression in PANC-1 and Sw1990 cell lines aiming to investigate the role of NUF2 in pancreatic cancer. NUF2 silencing by RANi (RNA interference) reduced the proliferation and colony formation ability of pancreatic cancer cells in vitro. Cell cycle analysis showed that NUF2 knockdown induced cell cycle arrest at G0/G1 phase via suppression of Cyclin B1, Cdc2 and Cdc25A. More importantly, NUF2 silencing was able to alleviate in vivo tumourigenesis in pancreatic cancer xenograft nude mice. Collectively, the present study indicates that the siRNA-mediated knockdown against NUF2 may be a promising therapeutic method for the treatment of pancreatic cancer.  相似文献   

15.
Prolonged exposure to melatonin improves glycemic control in animals. Although glucose metabolism is controlled by circadian clock genes, little is known about the role of melatonin signaling and its duration in the regulation of clock gene expression in pancreatic β-cells. Activation of MT1 and MT2 melatonin receptors inhibits cAMP signaling, which mediates clock gene expression. Therefore, this study investigated exposure duration-dependent alterations in cAMP element-binding protein (CREB) phosphorylation and clock gene expression that occur during and after exposure to ramelteon, a selective melatonin agonist used to treat insomnia. In rat INS-1 cells, a pancreatic β-cell line endogenously expressing melatonin receptors, ramelteon persistently decreased CREB phosphorylation during the treatment period (2–14 h), whereas the subsequent washout induced an enhancement of forskolin-stimulated CREB phosphorylation in a duration- and concentration-dependent manner. This augmentation was blocked by forskolin or the melatonin receptor antagonist luzindole. Similarly, gene expression analyses of 7 clock genes revealed the duration dependency of the effects of ramelteon on Rev-erbα and Bmal1 expression through melatonin receptor-mediated cAMP signaling; longer exposure times (14 h) resulted in greater increases in the expression and signaling of Rev-erbα, which is related to β-cell functions. Interestingly, this led to amplified oscillatory Rev-erbα and Bmal1 expression after agonist washout and forskolin stimulation. These results provide new insights into the duration-dependent effects of ramelteon on clock gene expression in INS-1 cells and may improve the understanding of its effect in vivo. The applicability of these results to pancreatic islets awaits further investigation.  相似文献   

16.
17.
18.
19.
Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-β-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC–tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.  相似文献   

20.
Mycophenolic acid (MPA) is one of many effective immunosuppressive drugs. However, MPA can induce cellular toxicity and impair cellular function in β-cells. To explore the effects of MPA and the relation between MPA and Trx-1, we used various methods, including an Illumina microarray, to identify the genes regulated during pancreatic β-cell death following MPA treatment. INS-1E cells (a pancreatic β-cell line) and isolated rat islets were treated with MPA for 12, 24, or 36 h, and subsequent microarray analysis showed that (Trx1) gene expression was significantly reduced by MPA. Further, Trx1 overexpression increased the cell viability, decreased the activations of c-jun N-terminal kinase (JNK) and caspase-3 by MPA, and attenuated ROS upregulation by MPA. Furthermore, siRNA knockdown of Trx1 increased MPA-induced cell death and the activations of p-JNK and caspase-3, and MPA significantly provoked the apoptosis of insulin-secreting cells via Trx1 downregulation. Our findings suggest that the prevention of Trx1 downregulation in response to MPA is critical for successful islet transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号