首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NH 4 + excretion was undetectable in N2-fixing cultures ofRhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH 4 + to the medium. The glutamate analog,l-methionine-dl-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH 4 + . When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH 4 + . Nitrogenase activities and NH 4 + production from fixed N2 were increased considerably when a combined nitrogen source, NH 4 + (>40 moles NH 4 + /mg cell protein in 6 days) orl-glutamate (>60 moles NH 4 + /mg cell protein in 6 days) was added to the cultures together with MSX.Biochemical analysis revealed thatR. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH 4 + as well as by glutamate.The results demonstrate that utilization of solar energy to photoproduce large quantities of NH 4 + from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

2.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH+4 is in equiblibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in gamma-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of gamma-glutamyl transferase activities without and with addition of 60 mM Mg2+. Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH+4, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH+4 produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

3.
Nitrogenase biosynthesis in Klebsiella pneumoniae including mutant strains, which produce nitrogenase in the presence of NH+4 (Shanmugam, K.T., Chan, Irene, and Morandi, C. (1975) Biochim. Biophys. Acta 408, 101--111) is repressed by a mixture of L-amino acids. Biochemical analysis shows that glutamine synthetase activity in strains SK-24, SK-28, and SK-29 is also repressed by amino acids, with no detectable effect on glutamate dehydrogenase. Among the various amino acids, L-glutamine in combination with L-aspartate was found to repress nitrogenase biosynthesis completely. In the presence of high concentrations of glutamine (1 mg/ml) even NH+4 repressed nitrogenase biosynthesis in the strains SK-27, SK-37, SK-55 and SK-56. Under these conditions, increased glutamate dehydrogenase activity was also detected. Physiological studies show that nitrogenase derepressed strains are unable to utilize NH+4 as sole source of nitrogen for biosynthesis of glutamate for biosynthesis of glutamate, whereas back mutations leading to NH+4 utilization results in sensitivity to repression by NH+4. These findings suggest that amino acids play an important role as regulators of nitrogen fixation.  相似文献   

4.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

5.
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4+ concentrations were investigated during the transition from an NH4+ free medium to one containing NH4+ ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80-100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1-2 hrs the NH4+ remaining in the medium is absorbed too, indicating the induction or activation of a new NH4+ transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4+ level leads to a reversible rise in the glutamine synthetase activity which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4+ level of about 0.6 mM does not change when extracellular NH4+ is taken up and repression of nitrogenase starts.  相似文献   

6.
Regulation of nitrogen fixation in Rhizobium sp.   总被引:3,自引:2,他引:1       下载免费PDF全文
Regulation of nitrogen fixation by ammonium and glutamate was examined in Rhizobium sp. 32H1 growing in defined liquid media. Whereas nitrogenase synthesis in Klebsiella pneunoniae is normally completely repressed during growth on NH4+, nitrogenase activity was detected in cultures of Rhizobium sp. grown with excess NH4+. However, an "ammonium effect" on activity was invariably observed in cultures grown on NH4+ as sole nitrogen source; the nitrogenase activity was, depending on conditions, 14 to 36% of that of comparable glutamate-grown cultures. Glutamate inhibited utilization of exogenous NH4+ and, in one of two procedures described, glutamate partially alleviated the ammonium effect on nitrogenase activity. NH4+, apparently produced from N2, was excreted into the culture medium when growth was initiated on glutamate, but not when NH4+ was thesole source of fixed nitrogen for growth. These findings are discussed in relation to nitrogen fixation by Rhizobium bacteroids.  相似文献   

7.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

8.
The development of the heterocyst by filamentous nitrogen-fixing cyanobacteria provides an attractive model system for studying cellular differentiation. Heterocyst synthesis is repressed by the presence of exogenous combined nitrogen. In this report, it is shown that the tryptophan analog, D,L-7-azatryptophan (Aza-T), is capable of relieving the repressive effect of exogenous NH4NO3 on heterocyst and nitrogenase synthesis. In nitrogen-fixing cultures, the presence of 20 micron Aza-T increases the heterocyst frequency twofold. The glutamate analog, L-methionine-D,L-sulfoximine (MSX), has also been shown to cause a derepression in the synthesis of heterocysts and nitrogenase. However, unlike MSX, Aza-T does not appear to exert its effects by inhibiting the activity of glutamine synthetase. Therefore, glutamine synthetase may not be the sole key to the derepression of heterocyst and nitrogenase development in the cyanobacteria. It is hoped that a study of Aza-T action may lead to the elucidation of a novel control mechanism.  相似文献   

9.
Rates of nitrogenase synthesis by Klebsiella pneumoniae were measured by pulse-labelling organisms with a mixture of 14C-labelled amino acids followed by sodium dodecyl sulphate gel electrophoresis and autoradiography. Populations from an NH4+-repressed, SO42--limited chemostat (0.46 mg dry wt ml-1), when released from NH4+ repression, simultaneously synthesized detectable quantities of the three nitrogenase polypeptides 45 min before acetylene-reducing activity was observed. Exposure of populations synthesizing nitrogenase to air or NH4+ (200 microgram N ml-1) repressed synthesis of both component proteins simultaneously, the rate initially decreasing by half in 11 to 12 min; in the presence of NH4+ a second slower phase with an approximate half-life of 30 min was observed. With 5% O2 in N2 the half-lives for the decreases in the rates of synthesis were 30 min for the Fe protein and 33 min for the Mo-Fe protein. Oxygen also repressed nitrogenase in a glutamine synthetase constitutive derivative of K. pneumoniae (strain SK24) which escapes NH4+ repression. Regulation of nitrogenase by O2 may therefore be independent of glutamine synthetase.  相似文献   

10.
The photosynthetic bacterium Rhodospirillum rubrum regulates the activity of its nitrogenase (N2ase) by interconverting the enzyme into three distinct enzymatic species: N2ase A (a fully active form) and two regulatory forms, N2ase Ractive and N2ase Rinactive. N2ase R is distinguished from N2ase A in vitro by the requirement of its Fe protein for activation by a Mn2+-dependent activating factor. N2ase is converted from the A to the R form in response to certain environmental factors such as carbon starvation, depletion of intracellular adenosine triphosphate, or the addition of NH4+ (or glutamate) to a culture of N-starved cells. The rapid inhibition of R. rubrum N2ase in vivo by NH4+ was shown to result from the conversion of N2ase A to N2ase Rinactive. On depletion of NH4+ from the culture, whole-cell N2ase activity returned; however, the enzyme remained in the R form. Unlike the effect of NH4+, adding glutamate to cells containing N2ase A did not inhibit in vivo activity, but converted the enzyme to the R form (N2ase Ractive). Although glutamate-induced N2ase R formation was much slower than the NH4+-induced reaction, it occurred in the presence of rifampin, indicating that de novo protein synthesis was not involved. This suggested that N2ase R was formed by a modification of N2ase A. Although glutamine synthetase in involved in the conversion of N2ase A to R, the adenylylation state of glutamine synthetase appears not to be involved in regulating this nitrogenase reaction.  相似文献   

11.
Regulation of glutamine synthetase in the blue-green alga Anabaena L-31   总被引:1,自引:0,他引:1  
In N2-grown cultures of Anabaena L-31, in which protein synthesis was prevented by chloramphenicol, presence of NH+4 caused a drastic decrease of glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) activity indicating NH+4-mediated inactivation or degradation of the enzyme. The half-life of glutamine synthetase was more than 24 h, whereas that of nitrogenase (reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing), EC 1.18.2.1) was less than 4 h, suggesting that glutamine synthetase may not act as positive regulator of nitrogenase synthesis in Anabaena. Glutamine synthetase purified to homogeneity was subject to cumulative inhibition by alanine, serine and glycine. The amino acids, however, exhibited partial antagonism in this behaviour. Glyoxylate, an intermediate in photorespiration, virtually prevented the amino acid inhibition. Kinetic studies revealed inhibition of the enzyme activity by high Mg2+ concentration under limiting glutamate level and by high glutamate in limiting Mg2+. Maximum enzyme activity occurred when the ratio of glutamate to free Mg2+ was 0.5 to 1.0. The results demonstrate that the enzyme is subject to multiple regulation by various metabolites involved in nitrogen assimilation.  相似文献   

12.
Nitrogenase activity in Rhodospirillum rubrum was inhibited by NH4+ more rapidly in low light than in high light. Furthermore, the nitrogenase of cells exposed to phosphorylation uncouplers was inhibited by NH4+ more rapidly than was the nitrogenase of controls without an uncoupler. These observations suggest that high levels of photosynthate inhibit the nitrogenase inactivation system. L-Methionine-DL-sulfoximine, a glutamine synthetase inhibitor, prevented NH4+ from inhibiting nitrogenase activity, which suggests that NH4+ must be processed at least to glutamine for inhibition to occur. An inhibitor of glutamate synthase activity, 6-diazo-5-oxo-L-norleucine, inhibited nitrogenase activity in the absence of NH4+, but only in cells exposed to low light. The mechanism of 6-diazo-5-oxo-L-norleucine inhibition appeared to be the same as that induced by NH4+, because nitrogenase activity could be restored in vitro by activating enzyme and Mn2+. The inhibitor data suggest that the glutamine pool or a molecule that responds to it activates the Fe protein-modifying (or protein-inactivating) system and that the accumulation of this (unidentified) molecule is retarded when the cells are exposed to high light. It was confirmed here that Anabaena nitrogenase is also inhibited by NH4+, but only when the cells are incubated under low light. This inhibition, however, unlike that in R. rubrum, could be completely reversed in high light, suggesting that the mechanisms of nitrogenase inhibition by NH4+ in these two phototrophs are different.  相似文献   

13.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

14.
The phototrophic purple bacterium Rhodopseudomonas sphaeroides, strain 2R, can assimilate ammonium by means of glutamine synthetase and glutamate synthase. A higher activity of glutamine synthetase is displayed by cells grown in the medium with glutamate or in the atmosphere of molecular nitrogen. The activity of glutamate synthase also rises when cells grow in the atmosphere of N2. However, in contrast to glutamine synthetase, the activity of glutamate synthase does not decrease in the presence of considerable NH4+ amounts. The glutamine synthetase of R. sphaeroides is modified by adenylylation/deadenylylation. In the presence of nitrogenase in R. sphaeroides, the glutamine synthetase is found mainly in the deadenylylation state. Methionine sulfone, an inhibitor of glutamine synthetase, partly restores the activity of nitrogenase in the presence of ammonium, and prevents adenylylation of glutamine synthetase.  相似文献   

15.
Inhibition of nitrogenase activity by NH+4 in Rhodospirillum rubrum.   总被引:20,自引:15,他引:5       下载免费PDF全文
Nitrogenase activities and the patterns of in vivo inhibition of nitrogenase by NH+4 were compared in Rhodospirillum rubrum grown under several conditions of nitrogen availability. In cells grown on N2 or glutamate plus N2, nitrogenase activity was relatively low and was totally inhibited by added NH+4 in 15 to 20 min. In contrast, cells grown on glutamate alone displayed higher nitrogenase activity, and NH+4 had very little effect. Cells grown on limiting amounts of NH+4 had lower nitrogenase activity, but NH+4 produced little inhibitory effect. Uptake of NH+4 could be demonstrated under all of these conditions, and this uptake was blocked by DL-methionine-dl-sulfoximine. The data indicated that cells not recently exposed to NH+4 had no mechanism for rapidly turning off nitrogenase activity in response to sudden additions of NH+4. In contrast, cells grown in the presence of N2, which form NH+4 internally, inhibited nitrogenase activity relatively quickly in response to added NH+4.  相似文献   

16.
Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage.  相似文献   

17.
A mutant of Rhodospirillum rubrum has been isolated, after mutagenesis with nitrosoguanidine, which is characterized by its inability to grow in the light on malate-minimal media with exogenous ammonia or alanine, poor growth on glutamine and vigorous growth on glutamate. This mutant produces low levels of a key NH+4 assimilation enzyme, glutamate synthase (NADPH-dependent). It also exhibits significant derepression of nitrogenase biosynthesis in the presence of ammonia or alanine, being 15% derepressed for the former and about 70% derepressed for the latter. Some of this mutant's fixed N2 is excreted into the medium as NH+4 (1 mumol NH+4 per mg cell protein in 50 h). Nitrogenase-mediated H2 production by this strain is considerable (42 mumol H2 per mg cell protein in 50 h), approximately twice that of the wild type assayed under similar conditions. These results demonstrate that genetic alteration of the photosynthetic N2-fixer's NH+4 assimilation system disrupts the tight coupling of N2 fixation and NH+4 assimilation normally observed in these organisms, enabling photochemical conversion steps to be utilized for the photoproduction of NH+4 and H2.  相似文献   

18.
Inorganic nitrogen metabolism in the obligate anaerobic thermophiles Chlostridium thermosaccharolyticum and Clostridium thermoautotrophicum differs in several respects. C. thermosaccharolyticum contains a nitrogenase as inferred from NH 4 + repressible C2H2 reduction, a glutamine synthetase which is partially repressed by ammonium, very labile glutamate synthase activities with both NADH and NADPH, NADPH-dependent glutamate dehydrogenase, and NH 4 + -dependent asparagine synthetase. C. thermoautotrophicum contains no nitrogenase, but glutamine synthetase, no glutamate synthase, no glutamate dehydrogenase, but a NADH-dependent alanine dehydrogenase and a NH 4 + -dependent asparagine synthetase.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase amidotransferase (glutamate synthase)  相似文献   

19.
The specific activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) were 4.2- and 2.2-fold higher, respectively, in cells of Azospirillum brasilense grown with N2 than with 43 mM NH4+ as the source of nitrogen. Conversely, the specific activity of glutamate dehydrogenase (GDH) was 2.7-fold higher in 43 mM NH4+-grown cells than in N2-grown cells. These results indicate that NH4+ could be assimilated and that glutamate could be formed by either the GS-GOGAT or GDH pathway or both, depending on the cellular concentration of NH4+. The routes of in vivo synthesis of glutamate were identified by using 13N as a metabolic tracer. The products of assimilation of 13NH4+ were, in order of decreasing radioactivity, glutamine, glutamate, and alanine. The formation of [13N]glutamine and [13N]glutamate by NH4+-grown cells was inhibited in the additional presence of methionine sulfoximine (an inhibitor of GS) and diazooxonorleucine (an inhibitor of GOGAT). Incorporation of 13N into glutamine, glutamate, and alanine decreased in parallel in the presence of carrier NH4+. These results imply that the GS-GOGAT pathway is the primary route of NH4+ assimilation by A. brasilense grown with excess or limiting nitrogen and that GDH has, at best, a minor role in the synthesis of glutamate.  相似文献   

20.
A mutant has been isolated from Anabaena sp. strain CA by treatment with N-methyl-N'-nitro-N-nitrosoguanidine, which has the unusual phenotypic characteristic of growth only under N2-fixing conditions. Growth of the mutant was completely inhibited by NO3- or NH4+ at concentrations routinely used for growth of the wild type, and sensitivity to NH4+ was especially pronounced. The inhibitory effect of NH4+ could not be overcome by glutamine, glutamate, or casein hydrolysate. Ammonia had no immediate inhibitory effect on protein synthesis, CO2 fixation, or O2 evolution, and the gradual inhibition of C2H2 reduction activity by NH4+ resembled a repression phenomenon. The glutamine synthetase activity of N2-fixing cultures appeared normal, yet the mutant was incapable of utilizing exogenous NH4+ for growth. Preliminary evidence suggests a possible alteration of glutamine synthetase, which could result in sensitivity to exogenous NH4+ by progressive inactivation of the enzyme or repression of its synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号