首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
As a major Ca2+ pump in the sarcoplasmic reticulum of the cardiomyocyte, SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) controls the relaxation and contraction of the cardiomyocyte. It is meticulously regulated by adapting its expression levels and affinity for Ca2+ ions to the physiological demand of the heart. Dysregulation of the SERCA2a activity entails poor cardiomyocyte contractility, resulting in heart failure. Conversely, improving cardiac SERCA2a activity, e.g. by boosting its expression level or by increasing its affinity for Ca2+, is a promising strategy to rescue contractile dysfunction of the failing heart. The structures of the related SERCA1a Ca2+ pump and the Na+/K+-ATPase of the plasma membrane exposed the pumping mechanism and conserved domain architecture of these ion pumps. However, how the Ca2+ affinity of SERCA2a is regulated at the molecular level remained unclear. A structural and functional analysis of the closely related SERCA2b Ca2+ pump, i.e. the housekeeping Ca2+ pump found in the endoplasmic reticulum and the only SERCA isoform characterized by a high Ca2+ affinity, aimed to fill this gap. We demonstrated the existence of a novel and highly conserved site on the SERCA2 pump mediating Ca2+ affinity regulation by the unique C-terminus of SERCA2b (2b-tail). It differs from the earlier-described target site of the affinity regulator phospholamban. Targeting this novel site may provide a new approach to improve SERCA2a function in the failing heart. Strikingly, the intramembrane interaction site of the 2b-tail in SERCA2b shares sequence and structural homology with the binding site of the β-subunit on the α Na+/K+-ATPase. Thus P-type ATPases seem to have developed related mechanisms of regulation, and it is a future challenge for us to discover these general principles of P-type regulation.  相似文献   

2.
3.
Diabetic cardiomyopathy is characterized by reduced cardiac contractility independent of vascular disease. A contributor to contractile dysfunction in the diabetic heart is impaired sarcoplasmic reticulum function with reduced sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) pump activity, leading to disturbed intracellular calcium handling. It is currently unclear whether increasing SERCA2a activity in hearts with existing diabetic cardiomyopathy could still improve calcium flux and contractile performance. To test this hypothesis, we generated a cardiac-specific tetracycline-inducible double transgenic mouse, which allows for doxycycline (DOX)-based inducible SERCA2a expression in which DOX exposure turns on SERCA2a expression. Isolated cardiomyocytes and Langendorff perfused hearts from streptozotocin-induced diabetic mice were studied. Our results show that total SERCA2a protein levels were decreased in the diabetic mice by 60% compared with control. SERCA2a increased above control values in the diabetic mice after DOX. Dysfunctional contractility in the diabetic cardiomyocyte was restored to normal by induction of SERCA2a expression. Calcium transients from diabetic cardiomyocytes showed a delayed rate of diastolic calcium decay of 66%, which was reverted toward normal after SERCA2a expression induced by DOX. Global cardiac function assessed in the diabetic perfused heart showed diminished left ventricular pressure, rate of contraction, and relaxation. These parameters were returned to control values by SERCA2a expression. In conclusion, we have used mice allowing for inducible expression of SERCA2a and could demonstrate that increased expression of SERCA2a leads to improved cardiac function in mice with an already established diabetic cardiomyopathy in absence of detrimental effects.  相似文献   

4.
The sarcoplasmic reticulum calcium ATPase SERCA2b is an alternate isoform encoded by the SERCA2 gene. SERCA2b is expressed ubiquitously and has a higher Ca(2+) affinity compared with SERCA2a. We made transgenic mice that overexpress the rat SERCA2b cDNA in the heart. SERCA2b mRNA level was approximately approximately 20-fold higher than endogenous SERCA2b mRNA in transgenic hearts. SERCA2b protein was increased 8-10-fold in the heart, whereas SERCA2a mRNA/protein level remained unchanged. Confocal microscopy showed that SERCA2b is localized preferentially around the T-tubules of the SR, whereas SERCA2a isoform is distributed both transversely and longitudinally in the SR membrane. Calcium-dependent calcium uptake measurements showed that the maximal velocity of Ca(2+) uptake was not changed, but the apparent pump affinity for Ca(2+) (K(0.5)) was increased in SERCA2b transgenic mice (0.199 +/- 0.011 micrometer) compared with wild-type control mice (0.269 +/- 0.012 micrometer, p < 0.01). Work-performing heart preparations showed that SERCA2b transgenic hearts had a higher rates of contraction and relaxation, shorter time to peak pressure and half-time for relaxation than wild-type hearts. These data show that SERCA2b is associated in a subcompartment within the sarcoplasmic reticulum of cardiac myocytes. Overexpression of SERCA2b leads to an increase in SR calcium transport function and increased cardiac contractility, suggesting that SERCA2b plays a highly specialized role in regulating the beat-to-beat contraction of the heart.  相似文献   

5.
Dilated cardiomyopathy is a disease of the heart muscle resulting from a diverse array of conditions that damages the heart and impairs myocardial function. Heart failure occurs when the heart is unable to pump blood at a rate which can accommodate the heart muscle's metabolic requirements. Several signaling pathways have been shown to be involved in the induction of cardiac disease and heart failure. Many of these pathways are linked to cardiac sarcoplasmic reticulum (SR) Ca cycling directly or indirectly. A large body of evidence points to the central role of abnormal Ca handling by SR proteins, Ca-ATPase pump (SERCA2a) and phospholamban (PLN), in pathophysiological heart conditions, compromising the contractile state of the cardiomyocytes. This review summarizes studies which highlight the key role of these two SR proteins in the regulation of cardiac function, the significance of SERCA2a-PLN interactions using transgenic approaches, and the recent discoveries of human PLN mutations leading to disease states. Finally, we will discuss extrapolation of experimental paradigms generated in animal models to the human condition.  相似文献   

6.
Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed that MI induced hypertrophy and dilation, and altered both contraction and relaxation of the left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed relaxation, increased diastolic Ca2+ levels, decreased Ca2+-transient amplitude, and diminished Ca2+ sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac remodeling were decreased when compared to non-treated MI mice. Delapril maintained cardiomyocyte contraction and relaxation, prevented diastolic Ca2+ overload and retained the normal Ca2+ sensitivity of contractile proteins. Delapril maintained SERCA2a activity through normalization of P-PLB/PLB (for both Ser16- PLB and Thr17-PLB) and PLB/SERCA2a ratios in cardiomyocytes, favoring normal reuptake of Ca2+ in the sarcoplasmic reticulum. In addition, delapril prevented defective cTnI function by normalizing the expression of PKC, enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key intracellular mechanisms contributing to preserve cardiac function.  相似文献   

7.
A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling.  相似文献   

8.
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.  相似文献   

9.
Recent studies have focused on developing transgenic mouse models to explore the physiological roles of sarcoplasmic reticulum (SR) calcium handling proteins. The goal of this study was to develop methodology to measure SR Ca2+ transport function and enzymatic properties of SR Ca2+ ATPase (SERCA) in individual mouse hearts. We describe here the procedures to specifically measure SR Ca2+ uptake, the formation and decomposition of SERCA phosphoenzyme intermediate (E-P) in mouse cardiac homogenates. The specificity of SERCA enzymatic activity in cardiac homogenates was established by (a) the selective inhibition of SERCA enzyme by inhibitor-thapsigargin, and (b) comparison of the kinetic parameters of SERCA activity between homogenates and isolated microsomes. Here we show that the apparent affinity of SERCA for Ca2+ and ATP, the time to reach steady-state levels of E-P, and the rate of E-P decomposition (turnover rate of SERCA enzyme) are similar in homogenates and microsomes. These studies demonstrate that SERCA Ca2+ transport and enzymatic properties can be accurately measured in mouse cardiac tissue homogenates. Additionally, we show that frozen cardiac homogenates can be used without significant loss of enzymatic activity. In conclusion, we have developed and established the methods to employ tissue homogenates to study SR Ca2+ transport function in individual mouse hearts.  相似文献   

10.
Adult SERCA2(b/b) mice expressing the non-muscle Ca2+ transport ATPase isoform SERCA2b in the heart instead of the normally predominant sarcomeric SERCA2a isoform, develop mild concentric ventricular hypertrophy with impaired cardiac contractility and relaxation [Circ. Res. 89 (2001) 838]. Results from a separate study on transgenic mice overexpressing SERCA2b in the normal SERCA2a context were interpreted to show that SERCA2b and SERCA2a are differentially targeted within the cardiac sarcoplasmic reticulum (SR) [J. Biol. Chem. 275 (2000) 24722]. Since a different subcellular distribution of SERCA2b could underlie alterations in Ca2+ handling observed in SERCA2(b/b), we wanted to compare SERCA2b distribution in SERCA2(b/b) with that of SERCA2a in wild-type (WT). Using confocal microscopy on immunostained fixed myocytes and BODIPY-thapsigargin-stained living cells, we found that in SERCA2(b/b) mice SERCA2b is correctly targeted to cardiac SR and is present in the same SR regions as SERCA2a and SERCA2b in WT. We conclude that there is no differential targeting of SERCA2a and SERCA2b since both are found in the longitudinal SR and in the SR proximal to the Z-bands. Therefore, alterations in Ca2+ handling and the development of hypertrophy in adult SERCA2(b/b) mice do not result from different SERCA2b targeting.  相似文献   

11.
In many types of heart failure cardiac myocyte Ca(2+) handling is abnormal because of downregulation of key Ca(2+) - handling proteins like sarco(endo)plasmic reticulum Ca(2+) - ATPase (SERCA)2a and ryanodine receptor (RyR)2. The alteration in SERCA2a and RyR2 expression results in altered cytosolic Ca(2+) transients, leading to abnormal contraction. Sorcin is an EF-hand protein that confers the property of caffeine-activated intracellular Ca(2+) release in nonmuscle cells by interacting with RyR2. To determine whether sorcin could improve the contractile function of the heart, we overexpressed sorcin in the heart of either normal or diabetic mice and in adult rat cardiomyocytes with an adenoviral gene transfer approach. Sorcin overexpression was associated with an increase in cardiac contractility of the normal heart and dramatically rescued the abnormal contractile function of the diabetic heart. These effects could be attributed to an improvement of the Ca(2+) transients found in the cardiomyocyte after sorcin overexpression. Viral vector-mediated delivery of sorcin to cardiac myocytes is beneficial, resulting in improved contractile function in diabetic cardiomyopathy.  相似文献   

12.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

13.
Cardiomyocytes from failing hearts exhibit reduced levels of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) and/or increased activity of the endogenous SERCA inhibitor phospholamban. The resulting reduction in the Ca(2+) affinity of SERCA impairs SR Ca(2+) cycling in this condition. We have previously investigated the physiological impact of increasing the Ca(2+) affinity of SERCA by substituting SERCA2a with the higher affinity SERCA2b pump. When phospholamban was also ablated, these double knockouts (DKO) exhibited a dramatic reduction in total SERCA levels, severe hypertrophy, and diastolic dysfunction. We presently examined the role of cardiomyocyte Ca(2+) homeostasis in both functional and structural remodeling in these hearts. Despite the low SERCA levels in DKO, we observed near-normal Ca(2+) homeostasis with rapid Ca(2+) reuptake even at high Ca(2+) loads and stimulation frequencies. Well-preserved global Ca(2+) homeostasis in DKO was paradoxically associated with marked activation of the Ca(2+)-dependent nuclear factor of activated T-cell-calcineurin pathway known to trigger hypertrophy. No activation of the MAP kinase signaling pathway was detected. These findings suggest that local changes in Ca(2+) homeostasis may play an important signaling role in DKO, perhaps due to reduced microdomain Ca(2+) buffering by SERCA2b. Furthermore, alterations in global Ca(2+) homeostasis can also not explain impaired in vivo diastolic function in DKO. Taken together, our results suggest that normalizing global cardiomyocyte Ca(2+) homeostasis does not necessarily protect against hypertrophy and heart failure development and that excessively increasing SERCA Ca(2+) affinity may be detrimental.  相似文献   

14.
15.
The goal of this study was to examine whether alteration of sarcoplasmic reticulum (SR) protein levels is associated with early-onset diastolic and late-onset systolic dysfunction in streptozotocin (STZ)-induced diabetic rat hearts. Four-week diabetic rat hearts exhibited slow relaxation, whereas 6-wk diabetic rat hearts exhibited slow and depressed contraction. Total phospholamban level was increased, and phosphorylated level was decreased in 4- and 6-wk diabetic rat hearts. Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) protein level was unchanged in 4-wk but decreased in 6-wk diabetic rat hearts. Only the apparent affinity of SR Ca2+ uptake for Ca2+ was decreased in 4-wk diabetic rat hearts, but the apparent affinity and the maximum rate was decreased in 6-wk diabetic rat hearts. Insulin treatment of the diabetic rats normalized SR protein expression and function. It was concluded that an increase in nonphosphorylated phospholamban and a decrease in the apparent affinity of SR Ca2+ pump for Ca2+ are associated with early-onset diastolic dysfunction and decreases in SERCA2 protein level and apparent affinity and maximum velocity of SR Ca2+ pump are associated with late-onset systolic dysfunction in diabetic rats.  相似文献   

16.
Recent physiological studies on the cardiovascular performance of tunas suggest that the elevated heart rates of these fish may rely on increased use of intracellular sarcoplasmic reticulum (SR) Ca2+ stores. In this study, we compare the cellular cardiac performance in endothermic tunas (bluefin, albacore, yellowfin) and their ectothermic sister taxa (mackerel) in response to acute temperature change. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) plays a major role during cardiac excitation-contraction (E-C) coupling, transporting Ca2+ from the cytosol into the lumen of the SR and thus promoting the relaxation of the muscle. Measurements of oxalate-supported Ca2+ uptake in SR-enriched ventricular vesicles indicated that tunas were capable of sustaining a rate of Ca2+ uptake that was significantly higher than the mackerel. Among tunas, the cold-tolerant bluefin had the highest rates of SR Ca2+ uptake and ATPase activity. The differences among Ca2+ uptake and ATP hydrolysis rates do not seem to result from intrinsic differences between the SERCA2 present in the different tunas, as shown by their similar temperature sensitivities and similar values for activation energy. Western blots reveal that increased SERCA2 protein content is associated with the higher Ca2+ uptake and ATPase activities seen in bluefin ventricles compared with albacore, yellowfin, and mackerel. We hypothesize that a key step in the evolution of high heart rate and high metabolic rate in tunas is increased activity of the SERCA2 enzyme. We also suggest that high levels of SERCA2 in bluefin tuna hearts may be important for retaining cardiac function at cold temperatures.  相似文献   

17.
Sarcalumenin (SAR), specifically expressed in striated muscle cells, is a Ca2+-binding protein localized in the sarcoplasmic reticulum (SR) of the intracellular Ca2+ store. By generating SAR-deficient mice, we herein examined its physiological role. The mutant mice were apparently normal in growth, health, and reproduction, indicating that SAR is not essential for fundamental muscle functions. SAR-deficient skeletal muscle carrying irregular SR ultrastructures retained normal force generation but showed slow relaxation phases after contractions. A weakened Ca2+ uptake activity was detected in the SR prepared from mutant muscle, indicating that SAR contributes to Ca2+ buffering in the SR lumen and also to the maintenance of Ca2+ pump proteins. Cardiac myocytes from SAR-deficient mice showed slow contraction and relaxation accompanied by impaired Ca2+ transients, and the mutant mice exhibited a number of impairments in cardiac performance as determined in electrocardiography, ventricular catheterization, and echocardiography. The results obtained demonstrate that SAR plays important roles in improving the Ca2+ handling functions of the SR in striated muscle.  相似文献   

18.
The sarcoplasmic reticulum calcium ATPase (SERCA) plays a central role in regulating intracellular Ca(2+) homeostasis and myocardial contractility. Several studies show that improving Ca(2+) handling in hypertrophied rodent hearts by increasing SERCA activity results in enhanced contractile function. This suggests that SERCA is a potential target for gene therapy in cardiac hypertrophy and failure. However, it raises the issue of increased energy cost resulting from a higher ATPase activity. In this study, we determined whether SERCA overexpression alters the energy cost of increasing myocardial contraction in mouse hearts with pressure-overload hypertrophy using (31)P NMR spectroscopy. We isolated and perfused mouse hearts from wild-type (WT) and transgenic (TG) mice overexpressing the cardiac isoform of SERCA (SERCA2a) 8 weeks after ascending aortic constriction (left ventricular hypertrophy (LVH)) or sham operation. We found that overexpressing SERCA2a enhances myocardial contraction and relaxation in normal mouse hearts during inotropic stimulation with isoproterenol. Energy consumption was proportionate to the increase in contractile function. Thus, increasing SERCA2a expression in the normal heart allows an enhanced inotropic response with no compromise in energy supply and demand. However, this advantage was not sustained in LVH hearts in which the energetic status was compromised. Although the overexpression of SERCA2a prevented the down-regulation of SERCA protein in LVH hearts, TG-LVH hearts showed no increase in inotropic response when compared with WT-LVH hearts. Our results suggest that energy supply may be a limiting factor for the benefit of SERCA overexpression in hypertrophied hearts. Thus, strategies combining energetic support with increasing SERCA activity may improve the therapeutic effectiveness for heart failure.  相似文献   

19.
We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.  相似文献   

20.
Sarco/endoplasmic reticulum (SR/ER) Ca(2+)-ATPase (SERCA) is an intracellular Ca(2+) pump localized on the SR/ER membrane. The role of SERCA in refilling intracellular Ca(2+) stores is pivotal for maintaining intracellular Ca(2+) homeostasis, and disturbed SERCA activity causes many disease phenotypes, including heart failure, diabetes, cancer, and Alzheimer disease. Although SERCA activity has been described using a simple enzyme activity equation, the dynamics of SERCA activity in living cells is still unknown. To monitor SERCA activity in living cells, we constructed an enhanced CFP (ECFP)- and FlAsH-tagged SERCA2a, designated F-L577, which retains the ATP-dependent Ca(2+) pump activity. The FRET efficiency between ECFP and FlAsH of F-L577 is dependent on the conformational state of the molecule. ER luminal Ca(2+) imaging confirmed that the FRET signal changes directly reflect the Ca(2+) pump activity. Dual imaging of cytosolic Ca(2+) and the FRET signals of F-L577 in intact COS7 cells revealed that SERCA2a activity is coincident with the oscillatory cytosolic Ca(2+) concentration changes evoked by ATP stimulation. The Ca(2+) pump activity of SERCA2a in intact cells can be expressed by the Hill equation with an apparent affinity for Ca(2+) of 0.41 ± 0.0095 μm and a Hill coefficient of 5.7 ± 0.73. These results indicate that in the cellular environment the Ca(2+) dependence of ATPase activation is highly cooperative and that SERCA2a acts as a rapid switch to refill Ca(2+) stores in living cells for shaping the intracellular Ca(2+) dynamics. F-L577 will be useful for future studies on Ca(2+) signaling involving SERCA2a activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号