首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of a light and electron microscopic study of the caryopsis coat and aleurone cells in ungerminated, unimbibed rice (Oryza sativa) caryopses are presented. Surrounding the rice grain is the caryopsis coat composed of the pericarp, seed coat and nucellar layers. The outermost layer, the pericarp, consists of crushed cells and is about 10 μm thick. The seed coat, interior to the pericarp, is one cell thick and has a thick cuticle. Between the seed coat cuticle and endosperm are the remains of the nucellus. The nucellus is about 2.5 μm thick and has a thick cuticle adjacent to the seed coat cuticle. Interior to the caryopsis coat is the aleurone layer of the endosperm. The aleurone completely surrounds the rice grain and is composed of two cell types—aleurone cells that surround the starchy endosperm and modified aleurone cells that surround the germ. The aleurone cells of the starchy endosperm contain many aleurone grains and lipid bodies around a centrally located nucleus. The modified aleurone cells lack aleurone grains, have fewer lipid bodies than the other aleurone cells, and contain filament bundles (fibrils). Plastids of aleurone cells exhibit a unique morphology in which the outer membranes invaginate to form tubules and vesicles within the plastid. Transfer aleurone cells are not observed in the mature rice caryopsis.  相似文献   

2.
Tonoplast intrinsic proteins (TIPs) belong to an aquaporin family of proteins that function as water-transport channels. In this study, we isolated and characterized three novel rice cDNAs for OsTIP1, OsTIP2, and OsTIP3 that are homologous to rice gamma-TIP cDNA. Northern blot hybridization analyses revealed that rice gamma-TIP was expressed in all plant organs. OsTIP1 was expressed in mature seed embryos and during early seed germination. OsTIP2 was expressed exclusively in roots. OsTIP3 was specifically expressed in seeds. These results suggest that the OsTIP1, OsTIP2, and OsTIP3 genes encode discrete, functionally specialized TIPs. Immunocytochemical analysis in rice endosperm cells revealed that rice gamma-TIP was localized only on the protein body type II (PB-II) membranes, whereas OsTIP3 was localized on the PB-II and the aleurone grain membranes. Although both the PB-II and the aleurone grain are derived from vacuoles, these results suggest that they may be derived from different types of vacuoles.  相似文献   

3.
The cellular pathway of sucrose transfer from the endosperm cavity to the starchy endosperm of developing grains of wheat (Triticum turgidum) has been elucidated. The modified aleurone and sub-aleurone cells exhibit a dense cytoplasm enriched in mitochondria and endoplasmic relicilium. Significantly, the sub-aleurone cells are characterized by secondary wall ingrowths. Numerous plasmodesmata interconnect all cells between the modified aleurone and starchy endosperm. The pro-tonophore carbonylcyanide-m-chlorophenyl hydrazone (CCCP) slowed [14C]sucrose uptake by grain tissue slices enriched in modified aleurone and sub-aleurone cells but had no effect on uptake by the starchy endosperm. The fluorescent weak acid sulphorhodamine G (SRG) was preferentially accumulated by the modified aleurone and sub-aleurone cells, and this uptake was sensitive to CCCP. The combined plasma membrane surface areas of the modified aleurone and sub-aleurone cells appeared to be sufficient to support the in vivo rates of sucrose transfer to the starchy endosperm. Plasmolysis of intact excised grain inhibited [14C]sucrose transfer from the endosperm cavity to the starchy endosperm. The sulphydryl group modifier p-chloromercuribenzenesulphonie acid (PCMBS) decreased [14C]sucrose uptake by the modified aleurone and sub-aleurone cells but had little effect on uptake by the starchy endosperm. In contrast, when PCMBS and [14C]sucrose were supplied to the endosperm cavity of intact excised grain, PCMBS slowed accumulation by all tissues equally. Estimates of potential sucrose fluxes through the interconnecting plasmodesmata were found to be within the published range. It is concluded that the bulk of sucrose is accumulated from the endosperm cavity by the modified aleurone and sub-aleurone cells and subsequently transferred through the symplast to the starchy endosperm.  相似文献   

4.
The maize (Zea mays L.) endosperm consists of an epidermal like layer of isodiametric aleurone cells surrounding a central body of starchy endosperm cells. In disorgal1 (dil1) and disorgal2 (dil2) mutants the control of the mitotic division plane is relaxed or missing, resulting in mature grains with disorganized aleurone layers. In addition to orientation of the division plane, both the shape and size of the aleurone cells are affected, and often more than one layer of aleurone cells is present. Homozygous dil1 and dil2 grains are shrunken due to reduced accumulation of starchy endosperm and premature developmental arrest of the embryo, and mature mutant grains germinate at a very low rate and fail to develop into plants. However, homozygous mutant plants can be obtained through embryo rescue, revealing that both mutants have an irregular leaf epidermis as well as roots with a strongly reduced number of root hairs and aberrant root hair morphology. Our results suggest the presence of common regulatory mechanisms for the control of cell division orientation in the aleurone and plant epidermis.Abbreviations DAP days after pollination - dek defective kernel mutant - dil disorganized aleurone layer mutant - GUS -glucuronidase - LM light microscopy - PPB pre-prophase band - SEM scanning electron microscopy - TUSC Trait Utility System for Corn  相似文献   

5.
Localization of carboxypeptidase I in germinating barley grain   总被引:2,自引:0,他引:2       下载免费PDF全文
Activity measurements and Northern blot hybridizations were used to study the temporal and spatial expression of carboxypeptidase I in germinating grains of barley (Hordeum vulgare L. cv Himalaya). In the resting grain no carboxypeptidase I activity was found in the aleurone layer, scutellum, or starchy endosperm. During germination high levels of enzyme activity appeared in the scutellum and in the starchy endosperm but only low activity was found in the aleurone layer. No mRNA for carboxypeptidase I was observed in the resting grain. By day 1 of germination the mRNA appeared in the scutellum where its level remained high for several days. In contrast, little mRNA was observed in the aleurone layer. These results indicate that the scutellum plays an important role in the production of carboxypeptidase I in germinating barley grain.  相似文献   

6.
Northern hybridizations were used to study the site of synthesis of three carboxypeptidases (Cpases I-III) which occur in the starchy endosperm of germinating barley grain ( Hordeum vulgare L.). Further evidence was obtained by studying secretion of these enzymes from scutella or aleurone layers separated from germinating grains. Messenger RNA for Cpase II was detected only in developing grain, and the bulk of the mRNA was localized in the starchy endosperm. This suggests that Cpase II is synthesized at the site of its accumulation, the starchy endosperm. In contrast, Cpase I is expressed during germination and the predominant site of synthesis is the scutellum, from which it is secreted into the starchy endosperm. Cpase III is also synthesized during germination, but the bulk of it is synthesized in and secreted from the aleurone layer. Thus, the three carboxypeptidases, all of which seem to play a role in hydrolysis of the reserve proteins in the starchy endosperm during germination, have different sites of synthesis.  相似文献   

7.
α-Amylase activities in extracts of different parts of barley grain (Hordeum vulgare L. cv Himalaya) were low after 1 day of germination at 20°C, but they began to increase afterwards. In the scutellum and the aleurone layer, the increases were small, but in the starchy endosperm a great increase took place between days 1 and 6.

When the aleurone layers were separated from germinating whole grains and incubated in 10 millimolar CaCl2, the α-amylase activity in the medium increased linearly for about 30 to 60 minutes, indicating secretion. The activity inside the aleurone layer decreased only slightly during the incubation, indicating that secretion of α-amylase was accompanied by synthesis. The rates of secretion in vitro by the aleurone layers separated at different stages of germination corresponded rather well to the rate of accumulation of α-amylase activity in the starchy endosperm in a whole grain.

Scutella separated after 1 day of germination released small amounts of α-amylase activity into 10 millimolar CaCl2. This release was linear for at least 1 hour and did not occur at 0°C; it is therefore likely to be due to secretion. At later stages of germination, the secretion by the scutella was slower than at day 1 and the total secretion accounted for only 5 to 10% of the increase of α-amylase activity in the starchy endosperm in a whole grain.

Since the times from the separation of the parts of the grain to the beginning of the secretion assay (10-40 minutes) as well as the duration of the assay itself (20-60 minutes) were short, the rates of secretion by the separated grain parts are likely to represent those in an intact grain. The results indicate therefore that at least in the conditions used the bulk of the total α-amylase in the starchy endosperm is secreted by the aleurone layer, the contribution by the scutellum being only 5 to 10% of the total activity.

  相似文献   

8.
A potential cellular pathway for photosynthate transfer between the crease phloem and the starchy endosperm of the developing wheat grain has been delineated using fluorescent dyes. Membrane permeable and impermeable dyes have been introduced into the grain through the crease phloem, the endosperm cavity or the dorsal surface of the starchy endosperm. The movement of the symplastic tracer 5-(6)-6-carboxyfluorescein (CF) derived from 5-(6)-6-carboxyfluorescein diacetate (CFDA), from either direction between the crease phloem and the endosperm cavity, indicated that the symplastic pathway was operative from the crease phloem to the nucellar projection. Furthermore, the inward movement of apoplastic tracer trisodium, 3-hydroxy-5,8,10-pyrentrisulphonate (PTS) from the endosperm cavity and that of CF following plasmolysis showed that there was a high resistance to solute transfer within the apoplast of the pigment strand. All dyes entered the modified aleurone and adjacent sub-aleurone bordering the endosperm cavity. Subsequent movement of the symplastic tracers CF and sulphorhodamine G (SRG) into and through the endosperm was rapid. However, the movement of apoplastic tracers PTS and Calcofluor White (CFW) was relatively slow and with tissue plasmolysis, CF was confined to the cytoplasm of the modified aleurone and subaleurone cells. Together, these results demonstrate that there is a high resistance to solute movement within the apoplast of the cells bordering the endosperm cavity. We propose that photosynthate transfer is via the symplast to the nucellar projection where membrane exchange to the endosperm cavity occurs. Uptake from the cavity is by the modified aleurone and small endosperm cells prior to transfer through the symplast to and through the starchy endosperm.  相似文献   

9.
The endosperm of cereal grains is an important resource for both food and feed. It contains three major types of tissue: starchy endosperm, the aleurone layer, and transfer cells. To improve grain quality and quantity using molecular methods, control of transgene expression directed by distinct temporal and spatial promoter activity is necessary. To identify aleurone layer-specific and/or transfer cell-specific promoters in rice, microarray analyses were performed, comparing the aleurone layer containing transfer cells and the other reproductive and vegetative tissues. After confirmation by RT-PCR analysis, we identified two putative aleurone layer and/or transfer cell-specific genes, AL1 and AL2. The promoter regions of these genes and β-glucuronidase (GUS) fusion constructs were stably transformed into rice. The GUS expression patterns indicated that the AL1 promoter was active exclusively in the dorsal aleurone layer adjacent to the main vascular bundle. In rice, transfer cells are differentiated in this region. Therefore, the promoter of the AL1 gene exhibits transfer cell-containing region-specific activity. The AL1 gene encodes a putative anthranilate N-hydroxycinnamoyl/benzoyltransferase. The promoter of this gene will be useful for enhancing uptake of nutrients from the mother cells and protecting filial seeds from pathogen attack.  相似文献   

10.
Development of aleurone and sub-aleurone layers in maize   总被引:1,自引:0,他引:1  
D. J. Kyle  E. D. Styles 《Planta》1977,137(3):185-193
Electron-microscope studies indicate that the aleurone tissue of maize (Zea mays L.) starts developing approximately 10–15 days after pollination in stocks that take ca. 40 days for the aleurone to mature completely. Development commences when specialized endosperm cells adjacent to the maternal nucellar layer start to differentiate. Differentiation is characterized by the formation of aleurone protein bodies and spherosomes. The protein bodies of the aleurone layer have a vacuolar origin whereas the protein bodies of the immediate underlying endosperm cells appear to develop from protrusions of the rough endoplasmic reticulum. Thus, two morphologically and developmentally distinct types of protein bodies are present in these adjacent tissues. The spherosomes of the aleurone layer form early in the development of this tissue and increase in number as the tissue matures. During the final stages of maturation, these spherosomes become closely apposed to the aleurone grains and the plasma membrane. No further changes are apparent in the structure of the aleurone cells after 40 days from pollination when the caryopsis begins to desiccate.  相似文献   

11.
Water transport in plants is greatly dependent on the expression and activity of water transport channels, called aquaporins. Here, we have clarified the tissue- and cell-specific localization of aquaporins in rice plants by immunoblotting and immunocytochemistry using seven isoform-specific aquaporin antibodies. We also examined water transport activities of typical aquaporin family members using a yeast expression system in combination with a stopped-flow spectrophotometry assay. OsPIP1 members, OsPIP2;1, OsTIP1;1 and OsTIP2;2 were expressed in both leaf blades and roots, while OsPIP2;3, OsPIP2;5 and OsTIP2;1 were expressed only in roots. In roots, large amounts of aquaporins accumulated in the region adjacent to the root tip (around 1.5-4 mm from the root tip). In this region, cell-specific localization of the various aquaporin members was observed. OsPIP1 members and OsTIP2;2 accumulated predominantly in the endodermis and the central cylinder, respectively. OsTIP1;1 showed specific localization in the rhizodermis and exodermis. OsPIP2;1, OsPIP2;3 and OsPIP2;5 accumulated in all root cells, but they showed higher levels of accumulation in endodermis than other cells. In the region at 35 mm from the root tip, where aerenchyma develops, aquaporins accumulated at low levels. In leaf blades, OsPIP1 members and OsPIP2;1 were localized mainly in mesophyll cells. OsPIP2;1, OsPIP2;3, OsPIP2;5 and OsTIP2;2 expressed in yeast showed high water transport activities. These results suggest that rice aquaporins with various water transport activities may play distinct roles in facilitating water flux and maintaining the water potential in different tissues and cells.  相似文献   

12.
Rapid growth of the submerged shoots of deepwater rice is essential for survival during the rainy season. We investigated changes in the expression of vacuolar H+-ATPase (V-ATPase), H+-pyrophosphatase (V-PPase), and aquaporins under submerged conditions. The amounts of vacuolar proton pumps, which support the active transport of ions into the vacuoles, were maintained on a membrane protein basis in the developing vacuoles. Among the six isogenes of V-PPase, OsVHP1;3 was markedly enhanced by submersion. The gene expression of efficient water channels, OsTIP1;1, OsTIP2;2, OsPIP1;1, OsPIP2;1, and OsPIP2;2, was markedly enhanced by submersion. The increase in aquaporin expression might support quick elongation of internodes. The mRNA levels of OsNIP2;2 and OsNIP3;1, which transport silicic and boric acids respectively, clearly decreased. The present study indicates that internodes of deepwater rice upregulate vacuolar proton pumps and water channel aquaporins and downregulate aquaporins that allow permeation of the substrates that suppress internode growth.  相似文献   

13.
14.
15.
Schuurink RC  Sedee NJ  Wang M 《Plant physiology》1992,100(4):1834-1839
The relationship between barley grain dormancy and gibberellic acid (GA3) responsiveness of aleurone layers has been investigated. Barley (Hordeum distichum L. cvs Triumph and Kristina) grains were matured under defined conditions in a phytotron. Grains of Triumph plants grown under long-day/warm conditions had lower dormancy levels than grains of plants grown under short-day/cool conditions. Aleurone layers isolated from grains of long-day Triumph plants secreted more α-amylase and had a higher responsiveness to GA3 as measured by α-amylase secretion. Storage of the grains increased both the percentage of germination and the responsiveness of the aleurone to GA3. Use of different sterilization methods to break dormancy confirmed the correlation between germination percentage and aleurone layer GA3 responsiveness. The response of embryoless Triumph grains to GA3 was lower than that of the isolated aleurone layers, suggesting a role of the starchy endosperm in regulating the GA3 response of the aleurone layer. Grains of the cultivar Kristina harvested from short day- and long day-grown plants lacked dormancy, and their isolated aleurone layers had a similar responsiveness to GA3 as measured by α-amylase secretion. The data indicate that the physiological state of the aleurone layers contributes to the percentage germination of the grains.  相似文献   

16.
Energy-dispersive x-ray analysis was used to investigate the elemental storage within protein bodies, specifically the globoid crystals, in grains of wheat. Areas of the grain investigated included various parts of the embryo, the aleurone layer plus starchy endosperm near the embryo and the aleurone layer plus starchy endosperm farthest from the embryo. Variations did occur grain-to-grain, cell-to-cell and, in certain regions, intracellularly. No protein bodies with electron-dense globoid crystals were found in the starchy endosperm. Generally globoid crystals contained P, K, and Mg in all areas investigated. Globoid crystals from the aleurone layer farthest from the embryo on occasion contained Ca, whereas aleurone globoid crystals near the embryo sometimes contained Fe. In most of the embryo regions examined, a few globoid crystals contained Ca along with P, K, and Mg. No specific pattern to the Ca distribution could be found. Welldefined elemental distribution occurred with Mn. Manganese was found only in globoid crystals located in the base and midregions of the stele in the radicle. Thus, in wheat there is some specific distribution of minerals dependent upon cell type and/or position in the grain.  相似文献   

17.
Resting seeds of several plant species, including barley grains, have been reported to contain aspartic proteinase (EC 3.4.23) activity. Here, the expression of the Hordeum vulgare L. aspartic proteinase (HvAP) was studied in developing and germinating grains by activity measurements as well as by immunocytochemical and in-situ hybridization techniques. Southern blotting suggests the presence of one to two HvAP-encoding genes in the barley genome, while Northern analysis reveals a single 2.1-kb mRNA in grains and vegetative tissues. Western blotting with antibodies to HvAP shows the same subunit structure in different grain parts. In developing grains, HvAP is produced in the embryo, aleurone layer, testa and pericarp, but in the starchy endosperm HvAP is present only in the crushed and depleted area adjacent to the scutellum. During seed maturation, HvAP-encoding mRNA remains in the aleurone layer and in the embryo, but the enzyme disappears from the aleurone cells. The enzyme, however, remains in the degenerating tissues of the testa and pericarp as well as in resting embryo and scutellum. During the first three days of germination, the enzyme reappears in the aleurone layer cells but is not secreted into the starchy endosperm. The HvAP is also expressed in the flowers, stem, leaves, and roots of barley. The wide localization of HvAP in diverse tissues suggests that it may have several functions appropriate to the needs of different tissues.Abbreviations DAA days after anthesis - DTT dithiothreitol - HvAP Hordeum vulgare aspartic proteinase Both authors have contributed equally to this workWe thank Mart Saarma, Pia Runeberg-Roos, Alan Schulman and Yrjö Helariutta for helpful discussions during the study, Tiina Arna and Sari Makkonen for their help in proteinase activity experiments as well as Jaana Korhonen (Department of Pathology, University of Helsinki), Salla Marttila and Ilkka Porali (Department of Biology, University of Jyväskylä, Jyväskylä, Finland) for their advice on microscopical techniques. We also thank Liisa Pyhälä and Leena Liesirova for the production of the antibodies to HvAP at the National Public Health Institute, Helsinki. This study was supported by grants from the Ministry of Agriculture and Forestry and the Academy of Finland.  相似文献   

18.
The rice endosperm plays crucial roles in nourishing the embryo during embryogenesis and seed germination. Although previous studies have provided the general information about rice endosperm, a systematic investigation throughout the entire endosperm developmental process is still lacking. In this study, we examined in detail rice endosperm development on a daily basis throughout the 30‐day period of post‐fertilization development. We observed that coenocytic nuclear division occurred in the first 2 days after pollination (DAP), cellularization occurred between 3 and 5 DAP, differentiation of the aleurone and starchy endosperm occurred between 6 and 9 DAP, and accumulation of storage products occurred concurrently with the aleurone/starchy endosperm differentiation from 6 DAP onwards and was accomplished by 21 DAP. Changes in cytoplasmic membrane permeability, possibly caused by programmed cell death, were observed in the central region of the starchy endosperm at 8 DAP, and expanded to the whole starchy endosperm at 21 DAP when the aleurone is the only living component in the endosperm. Further, we observed that a distinct multi‐layered dorsal aleurone formed near the dorsal vascular bundle, while the single‐ or occasionally two‐cell layered aleurone was located in the lateral and ventral positions of endosperm. Our results provide in detail the dynamic changes in mitotic divisions, cellularization, cell differentiation, storage product accumulation, and programmed cell death that occur during rice endosperm development.  相似文献   

19.
Rapid growth of the submerged shoots of deepwater rice is essential for survival during the rainy season. We investigated changes in the expression of vacuolar H(+)-ATPase (V-ATPase), H(+)-pyrophosphatase (V-PPase), and aquaporins under submerged conditions. The amounts of vacuolar proton pumps, which support the active transport of ions into the vacuoles, were maintained on a membrane protein basis in the developing vacuoles. Among the six isogenes of V-PPase, OsVHP1;3 was markedly enhanced by submersion. The gene expression of efficient water channels, OsTIP1;1, OsTIP2;2, OsPIP1;1, OsPIP2;1, and OsPIP2;2, was markedly enhanced by submersion. The increase in aquaporin expression might support quick elongation of internodes. The mRNA levels of OsNIP2;2 and OsNIP3;1, which transport silicic and boric acids respectively, clearly decreased. The present study indicates that internodes of deepwater rice upregulate vacuolar proton pumps and water channel aquaporins and downregulate aquaporins that allow permeation of the substrates that suppress internode growth.  相似文献   

20.
Cereal endosperm is a model system for cell fate determination in plants. In wild-type plants the outermost endosperm cells adopt aleurone cell fate, while all underlying cells display starchy endosperm cell fate. Mutant analysis showed that cell fate is determined by position rather than lineage. To further characterise the precise cell fate of the outermost cells, we performed a differential screen and isolated the novel marker gene Vpp1. It encodes a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase) and is mainly expressed in kernels, leaves and tassels. In kernels, its expression is restricted to the aleurone layer with the maximum of expression shifting from the adaxial to the abaxial side during early stages. Together with three other marker genes Vpp1 was then used to analyse the cell fate of the outermost cells in Dap3, Dap7, cr4 and dek1 mutants, all of which have aberrant aleurone layers. In the Dap3 and Dap7 mutants the Vpp1 and Ltp2 markers but not the A1 and Zein markers were expressed in patches without aleurone indicating that the outermost cells had some but not all features of aleurone cells and did not simply adopt starchy endosperm cell fate. A similar result was obtained in the cr4 mutant, although Ltp2 expression was less generalised. In other Dap7 patches characterised by multiple aleurone-like cell layers the expression of Vpp1 and Ltp2 confirmed the aleurone cell fate of the cells in the additional cell layers. The analysis of dek1 mutants confirmed the starchy endosperm cell fate of the majority but not all outermost cells. Based on these data we propose a model suggesting a stepwise commitment to aleurone cell fate. Sequential steps are marked by the expression of Vpp1, the expression of Ltp2, the acquisition of a regular shape and thick walls and finally pigmentation coupled with A1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号