首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Two of the mostly unsolved but increasingly urgent problems for modern biologists are a) to quickly and easily analyse protein structures and b) to comprehensively mine the wealth of information, which is distributed along with the 3D co-ordinates by the Protein Data Bank (PDB). Tools which address this issue need to be highly flexible and powerful but at the same time must be freely available and easy to learn.  相似文献   

2.
Protein–protein interactions (PPIs) are important for various biological processes in living cells. Several methods have been developed for the visualization of PPIs in vivo; however, these methods are unsuitable for visualization of post-PPI events such as dissociation and translocation. In this study, we applied a split SNAP-tag system for the visualization of post-PPI events. This method enabled tracking of the protein following dissociation from the protein–protein complex. Thus, the split SNAP-tag system should prove to be a useful tool for visualization of post-PPI events.  相似文献   

3.
Residues in a protein–protein interface that are important for forming and stabilizing the interaction can usually be identified by looking at patterns of evolutionary conservation in groups of homologous proteins and also by the computational identification of binding hotspots. The PRICE (PRotein Interface Conservation and Energetics) server takes the coordinates of a protein–protein complex, dissects the interface into core and rim regions, and calculates (1) the degree of conservation (measured as the sequence entropy), as well as (2) the change in free energy of binding (∆∆G, due to alanine scanning mutagenesis) of interface residues. Results are displayed as color-coded plots and also made available for download. This enables the computational identification of binding hot spots, based on which further experiments can be designed. The method will aid in protein functional prediction by correct assignment of hot regions involved in binding. Consideration of sequence entropies for residues with large ∆∆G values may provide an indication of the biological relevance of the interface. Finally, the results obtained on a test set of alanine mutants has been compared to those obtained using other servers/methods. The PRICE server is a web application available at .  相似文献   

4.
The analysis of protein–protein interactions is important for developing a better understanding of the functional annotations of proteins that are involved in various biochemical reactions in vivo. The discovery that a protein with an unknown function binds to a protein with a known function could provide a significant clue to the cellular pathway concerning the unknown protein. Therefore, information on protein–protein interactions obtained by the comprehensive analysis of all gene products is available for the construction of interactive networks consisting of individual protein–protein interactions, which, in turn, permit elaborate biological phenomena to be understood. Systems for detecting protein–protein interactions in vitro and in vivo have been developed, and have been modified to compensate for limitations. Using these novel approaches, comprehensive and reliable information on protein–protein interactions can be determined. Systems that permit this to be achieved are described in this review.K. Kuroda, M. Kato and J. Mima contributed equally to this work.  相似文献   

5.
Abstract

Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein–substrate and protein–protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence–function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein–protein interactions in this system.  相似文献   

6.
Abstract

E. coliβ-glucuronidase, a cytosolic enzyme, was found not to be a good reporter enzyme for secretion studies in plants. In this study, we chose to test and adapt an animal β-glucuronidase as a better reporter protein for the secretory pathway of plants. We modified rat β-glucuronidase to obtain secreted and vacuolar variants. Five different C-termini were produced: the original C-terminus of the rat enzyme, a 19 codon deletion (Δ19), a 15 codon deletion (Δ15) and fusions of the Δ19 or Δ15 termini with the last 6 or 7 codons of the vacuolar sorting determinant of tobacco chitinase A, respectively. The signal sequence of the rat β-glucuronidase polypeptide was replaced by the sequence encoding the signal peptide of tobacco chitinase A. In a transient expression system, the best enzymatic activity was found with β-glucuronidase having the 15 codons deletion, therefore Δ15 (secRGUS) and Δ15 + Chi (RGUS-Chi) were further evaluated and their efficiency of secretion or vacuolar targeting were tested under different conditions. To determine the correct targeting of reporter genes, we compared the localization of β-glucuronidase and of an endogenous marker, α-mannosidase. Treating cells with drugs that specifically affect different aspects of the secretory pathway also tested the validity of RGUS-based reporters. A non-specific inhibitor such as cytochalasin D and a wide range inhibitor such as BFA were compared with specific inhibitors such as wortmannin and bafilomycin A1. Finally, monensin and NH4Cl were used to evaluate the role of vacuolar pH in correct RGUS-Chi targeting. The two new reporter proteins proved to be good tools for our studies in the transient expression system in tobacco protoplasts and for further applications.  相似文献   

7.
3',5' Cyclic guanosine monophosphate (cGMP)-dependent protein kinase G-1α (PKG-1α) is an enzyme that is a target of several anti-hypertensive and erectile dysfunction drugs. Binding of cGMP to PKG-1α produces a conformational change that leads to enzyme activation. Activated PKG-1α performs important roles both in blood vessel vasodilation and in maintaining the smooth muscle cell in a differentiated contractile state. Recombinant PKG-1α has been expressed and purified using Sf9-insect cells. However, attempts at purifying full length protein in a soluble and active form in prokaryotes have thus far been unsuccessful. These attempts have been hampered by the lack of proper eukaryotic protein folding machinery in bacteria. In this study, we report the successful expression and purification of PKG-1α using a genetically engineered Escherichia coli strain, Rosetta-gami 2(DE3), transduced with full-length human PKG-1α cDNA containing a C-terminal histidine tag. PKG-1α was purified to homogeneity using sequential nickel affinity chromatography, gel filtration and ion exchange MonoQ columns. Protein identity was confirmed by immunoblot analysis. N-terminal sequencing using Edman degradation demonstrated that the purified protein was full length. Analysis of enzyme kinetics, using a nonlinear regression curve, identified that, at constant cGMP levels (10μM) and varying ATP concentrations, PKG-1α had a maximal velocity (V(max)) of 5.02±0.25pmol/min/μg and a Michaelis-Menten constant (K(m)) of 11.78±2.68μM ATP. Recent studies have suggested that endothelial function can be attenuated by oxidative and/or nitrosative stress but the role of PKG-1α under these conditions is unclear. We found that PKG-1α enzyme activity was attenuated by exposure to the NO donor, spermine NONOate, hydrogen peroxide, and peroxynitrite but not by superoxide, suggesting that the attenuation of PKG-1α activity may be an under-appreciated mechanism underlying the development of endothelial dysfunction in a number of cardiovascular diseases.  相似文献   

8.
The ATP-binding cassette (ABC) transporters are a large family of proteins responsible for the translocation of a variety of compounds across the membranes of both prokaryotes and eukaryotes. The inter-protein and intra-protein interactions in these traffic ATPases are still only poorly understood. In the present study we describe, for the first time, an extensive yeast two-hybrid (Y2H)-based analysis of the interactions of the cytoplasmic loops of the yeast pleiotropic drug resistance (Pdr) protein, Pdr5p, an ABC transporter of Saccharomyces cerevisiae. Four of the major cytosolic loops that have been predicted for this protein [including the two nucleotide-binding domain (NBD)-containing loops and the cytosolic C-terminal region] were subjected to an extensive inter-domain interaction study in addition to being used as baits to identify potential interacting proteins within the cell using the Y2H system. Results of these studies have revealed that the first cytosolic loop (CL1) – containing the first NBD domain – and also the C-terminal region of Pdr5p interact with several candidate proteins. The possibility of an interaction between the CL1 loops of two neighboring Pdr5p molecules was also indicated, which could possibly have implications for dimerization of this protein. Electronic Publication  相似文献   

9.
Simulations and experiments that monitor protein unfolding under denaturing conditions are commonly employed to study the mechanism by which a protein folds to its native state in a physiological environment. Due to the differences in conditions and the complexity of the reaction, unfolding is not necessarily the reverse of folding. To assess the relevance of temperature initiated unfolding studies to the folding problem, we compare the folding and unfolding of a 125-residue protein model by Monte Carlo dynamics at two temperatures; the lower one corresponds to the range used in T -jump experiments and the higher one to the range used in unfolding simulations of all-atom models. The trajectories that lead from the native state to the denatured state at these elevated temperatures are less diverse than those observed in the folding simulations. At the lower temperature, the system unfolds through a mandatory intermediate that corresponds to a local free energy minimum. At the higher temperature, no such intermediate is observed, but a similar pathway is followed. The structures contributing to the unfolding pathways resemble most closely those that make up the "fast track" of folding. The transition state for unfolding at the lower temperature (above Tm) is determined and is found to be more structured than the transition state for folding below the melting temperature. This shift towards the native state is consistent with the Hammond postulate. The implications for unfolding simulations of higher resolution models and for unfolding experiments of proteins are discussed.  相似文献   

10.
Protein tyrosine phosphatase interacting protein 51 (PTPIP51) interacts both in vitro and in vivo with PTP1B, a protein tyrosine phosphatase involved in cellular regulation. PTPIP51 is known to be expressed in many different types of tissues. It is involved in cellular processes such as proliferation, differentiation and apoptosis. Nevertheless, the exact cellular function of PTPIP51 is still unknown. The present review summarizes our current knowledge of the PTPIP51 gene and its mRNA and protein structure.  相似文献   

11.
Glioblastoma multiforme (GBM) is the most malignant of all the brain tumors with very low median survival time of one year, as per Central Brain Tumor Registry of the USA, 2001. Efforts are ongoing to understand this disease pathogenesis in complete details. Global gene expression changes in GBM pathogenesis have been studied by several groups using microarray technology (e.g. Carro et al., 2010). One of the many approaches to ‘understand the control mechanisms underlying the observed changes in the activity of a biological process’ (Cline et al., 2007) is integration of gene expression and protein–protein interactions (PPI) datasets. Among several examples, aberrant activation of Wnt/β-catenin signaling pathway as well as sonic hedgehog (SHH) signaling pathway is reported in GBMs (Klaus & Birchmeier, 2008). Further, these two pathways are also involved in proliferation and clonogenicity of glioma cancer stem cells (Li et al., 2009), which are thought to play a role in glioma initiation, proliferation, and invasion, and are one of the important points of intervention. Hedgehog–Gli1 signaling is also found to regulate the expression of stemness genes. In this paper, analyses of the relationship between the significant differential expression of these and other genes and the connectivity as well as topological features of a PPI network would be discussed. This way, genes potentially overlooked when relying solely on expression profiles may be identified which can be biologically relevant as possible drug target/s or disease biomarker/s.  相似文献   

12.
There has been a recent trend towards the miniaturization of analytical tools, but what are the advantages of microfluidic devices and when is their use appropriate? Recent advances in the field of micro-analytical systems can be classified according to instrument performance (which refers here to the desired property of the analytical tool of interest) and two important features specifically related to miniaturisation, namely reduction of the sample volume and the time-to-result. Here we discuss the contribution of these different parameters and aim to highlight the factors of choice in the development and use of microfluidic devices dedicated to protein analysis.  相似文献   

13.
Molecular genetic analysis of severe protein C deficiency   总被引:7,自引:0,他引:7  
Severe protein C deficiency is a rare, early onset, venous thrombotic condition that is inherited as an autosomal recessive trait. The protein C (PROC) genes of nine unrelated individuals with severe protein C deficiency were sequenced yielding a total of 13 different lesions. Eight of these were novel, including a gross gene deletion, three missense mutations, two micro-deletions, a splicing mutation and a single base-pair substitution in the HNF-3 binding site in the PROC gene promoter. Evidence for the pathogenicity of the mutations detected was obtained by molecular modelling, in vitro splicing assay and reporter gene assay. Neither the plasma protein C activity level nor the nature of the PROC gene lesions detected were found to be a good prognostic indicator of the age of onset or clinical severity of thrombotic symptoms. Other factors may thus complicate the relationship between genotype and clinical phenotype. Indeed, in two patients, the inheritance of either one or two Factor V Leiden alleles in addition to two PROC gene lesions could have served to precipitate the thrombotic events. No association was however apparent between clinical severity and the possession of a particular promoter polymorphism genotype. Despite the absence of a clear genotype-phenotype relationship, the molecular genetic analysis of the severe recessive form of protein C deficiency potentiates both the counselling of affected families and the provision of antenatal exclusion diagnosis.  相似文献   

14.
N-ethylmaleimide-sensitive fusion protein (NSF) is an ATPase required for vesicular transport throughout the constitutive secretory and endocytic pathways. Recently, NSF has also been implicated in regulated exocytosis in synapses--based on SNAP-mediated binding in vitro to a complex of neurotoxin substrates (termed 'SNAREs'). This work has generated an hypothesis in which the interaction of SNAREs (SNAP receptors) on the vesicle membrane with those on the target membrane forms a docking complex to which SNAPs bind, thus allowing NSF to bind and elicit membrane fusion. However, current evidence supports an earlier, pre-fusion role for NSF. We speculate that this role may be as a molecular chaperone for the membrane docking/fusion machinery.  相似文献   

15.
Fibronectin: a chromatin-associated protein?   总被引:14,自引:0,他引:14  
L Zardi  A Siri  B Carnemolla  L Santi  W D Gardner  S O Hoch 《Cell》1979,18(3):649-657
We have previously reported that chromatin preparations from human cultured fibroblasts contain a single homologous serum protein. In this paper we present evidence, based on immunological identity and physicochemical properties, that this serum protein is fibronectin. Furthermore, using a radioimmunoassay system, we have estimated that fibronectin represents about 0.7% of the total protein in both chromatin preparations and whole fibroblasts. Using a nitrocellulose filter assay system, we also show that fibronectin is a DNA-binding protein having an equilibrium constant of 4.6 x 10(-6) M. Equilibrium competition experiments have demonstrated that fibronectin has the ability to differentiate among nucleotides, indicating that fibronectin-DNA interaction is at least partially specific, and that a minimum polymer length of 12-18 nucleotides is required for effective binding to occur. Fibronectin has been isolated readily from plasma using DNA-affinity chromatography. We do not have direct evidence that fibronectin is an actual nonhistone chromosomal protein, but fibronectin is a DNA-binding protein (at least under in vitro assay conditions) and appears to be a normal constituent of chromatin as chromatin is currently isolated from cell nuclei.  相似文献   

16.
Bacterial fibronectin-binding proteins (FnBPs) contain a large intrinsically disordered region (IDR) that mediates adhesion of bacteria to host tissues, and invasion of host cells, through binding to fibronectin (Fn). These FnBP IDRs consist of Fn-binding repeats (FnBRs) that form a highly extended tandem β-zipper interaction on binding to the N-terminal domain of Fn. Several FnBR residues are highly conserved across bacterial species, and here we investigate their contribution to the interaction. Mutation of these residues to alanine in SfbI-5 (a disordered FnBR from the human pathogen Streptococcus pyogenes) reduced binding, but for each residue the change in free energy of binding was <2 kcal/mol. The structure of an SfbI-5 peptide in complex with the second and third F1 modules from Fn confirms that the conserved FnBR residues play equivalent functional roles across bacterial species. Thus, in SfbI-5, the binding energy for the tandem β-zipper interaction with Fn is distributed across the interface rather than concentrated in a small number of "hot spot" residues that are frequently observed in the interactions of folded proteins. We propose that this might be a common feature of the interactions of IDRs and is likely to pose a challenge for the development of small molecule inhibitors of FnBP-mediated adhesion to and invasion of host cells.  相似文献   

17.
18.
Many proteins exert their functions through a protein complex and protein–protein interactions. However, the study of these types of interactions is complicated when dealing with toxic or hydrophobic proteins. It is difficult to use the popular Escherichia coli host for their expression, as these proteins in all likelihood require a critical partner protein to ensure their proper folding and stability. In the present study, we have developed a novel co-expression vector, pHEX, which is compatible with, and thus can be partnered with, many commercially available E. coli vectors, such as pET, pGEX and pMAL. The pHEX contains the p15A origin of replication and a T7 promoter, which can over-produce a His-tagged recombinant protein. The new co-expression system was demonstrated to efficiently co-produce and co-purify heterodimeric protein complexes, for example PE25/PPE41 (Rv2430c/Rv2431c) and ESAT6/CFP10 (Rv3874/Rv3875), from the human pathogen Mycobacterium tuberculosis H37Rv. Furthermore, the system was also effectively used to characterize protein–protein interactions through convenient affinity tags. Using an in vivo pull-down assay, for the first time we have confirmed the presence of three pairs of PE/PPE-related novel protein interactions in this pathogen. In summary, a convenient and efficient co-expression vector system has been successfully developed. The new system should be applicable to any protein complex or any protein–protein interaction of interest in a wide range of biological organisms.  相似文献   

19.
Roy SS  Patra M  Basu T  Dasgupta R  Bagchi A 《Gene》2012,495(1):49-55
Heat-stress to any living cell is known to trigger a universal defense response, called heat-shock response, with rapid induction of tens of different heat-shock proteins. Bacterial heat-shock genes are transcribed by the σ32-bound RNA polymerase instead of the normal σ70-bound RNA polymerase. In this study, the diversity in sequence, variation in secondary structure and function amongst the different functional regions of the proteobacterial σ32 family of proteins, and their phylogenetic relationships have been analyzed. Bacterial σ32 proteins can be subdivided into different functional regions which are referred to as regions 2, 3, and 4. There is a great deal of sequence conservation among the functional regions of proteobacterial σ32 family of proteins though some mutations are also present in these regions. Region 2 is the most conserved one, while region 4 has comparatively more variable sequences. In the present work, we tried to explore the effects of mutations in these regions. Our study suggests that the sequence diversities due to natural mutations in the different regions of proteobacterial σ32 family lead to different functions. So far, this study is the first bioinformatic approach towards the understanding of the mechanistic details of σ32 family of proteins using the protein sequence information only. This study therefore may help in elucidating the hitherto unknown molecular mechanism of the functionalities of σ32family of proteins.  相似文献   

20.
Exploring the function of the genome and the encoded proteins has emerged as a new and exciting challenge in the postgenomic era. Novel technologies come into view that promise to be valuable for the investigation not only of single proteins, but of entire protein networks. Protein microarrays are the innovative assay platform for highly parallel in vitro studies of protein–protein interactions. Due to their flexibility and multiplexing capacity, protein microarrays benefit basic research, diagnosis and biomedicine. This review provides an overview on the basic principles of protein microarrays and their potential to multiplex protein–protein interaction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号