首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Two highly purified proteins with quite different properties capable of oxaloacetate keto-enol-tautomerase activity (oxaloacetate keto-enol-isomerase, EC 5.3.2.2) were isolated from the bovine heart mitochondrial matrix. The first protein has an apparent molecular mass of 37 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-200 gel filtration. It is quite stable upon storage at 40 degrees C and reaches the maximal catalytic activity at pH 8.5 with a half-maximal activity at pH 7.0. The enzyme is specifically inhibited by oxalate and diethyloxaloacetate. When assayed in the enol----ketone direction at 25 degrees C (pH 9.0), the enzyme obeys a simple substrate saturation kinetics with Km and Vmax values of 45 microM and 74 units per mg of protein, respectively; the latter value corresponds to the turnover number of 2700 min-1. The second protein has an apparent molecular mass of 80 kDa as determined by SDS-gel electrophoresis and Sephacryl SF-300 gel filtration. The enzyme is rapidly inactivated at 40 degrees C and shows a sharp pH optimum of activity at pH 9.0. The enzyme can be completely protected from thermal inactivation by oxaloacetate and dithiothreitol. The kinetic parameters of the enzyme as assayed in the enol----ketone direction at 25 degrees C (pH 9.0) are: Km = 220 microM and Vmax = 20 units per mg of protein; the latter corresponds to the turnover number of 1600 min-1. The enzyme activity is specifically inhibited by maleate and pyrophosphate. About 30% of the total oxaloacetate tautomerase activity in crude mitochondrial matrix is represented by the 37 kDa enzyme and about 70% by the 80 kDa protein.  相似文献   

2.
Shi Y  Jiang Z  Han P  Zheng GX  Song KK  Chen QX 《Biochimie》2007,89(3):347-354
A beta-N-acetyl-D-glucosaminidase (NAGase) from the cabbage butterfly (Pieris rapae) was purified. The purified enzyme was a single band on polyacrylamide gel electrophoresis and the specific activity was determined to be 8715 U/mg. The molecular weight of whole enzyme was determined to be 106 kDa by gel filtration, and the result of SDS-PAGE showed that the enzyme was a heterodimer, which contained two subunits with different mass of 59.5 and 57.2 kDa. The optimum pH and optimum temperature of the enzyme for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were investigated to be at pH 6.2 and at 42 degrees C, respectively, and the Michaelis-Menten constant (K(m)) was determined to be 0.285 mM at pH 6.2 and 37 degrees C. The stability of the enzyme was investigated and the results showed that the enzyme was stable at the pH range from 4.0 to 9.0 and at the temperature below 45 degrees C. The activation energy was 83.86 kJ/mol. The reaction of this enzyme with pNP-NAG was judged to be Ordered Bi-Bi mechanism according to the inhibitory behaviors of the products. The ionization constant, pK(e), of ionizing group at the active site of the enzyme was found to be 5.20 at 39.0 degrees C, and the standard dissociation enthalpy (DeltaH(o)) was determined to be 2.18 kcal/mol. These results showed that the ionizing group of the enzyme active center was the carboxyl group. The results of chemical modification also suggested that carboxyl group was essential to the enzyme activity. Moreover, Zn(2+), Hg(2+), Cu(2+) had strongly inhibitory effects on the enzyme activity.  相似文献   

3.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

4.
A novel goose-type lysozyme was purified from egg white of cassowary bird (Casuarius casuarius). The purification step was composed of two fractionation steps: pH treatment steps followed by a cation exchange column chromatography. The molecular mass of the purified enzyme was estimated to be 20.8 kDa by SDS-PAGE. This enzyme was composed of 186 amino acid residues and showed similar amino acid composition to reported goose-type lysozymes. The N-terminal amino acid sequencing from transblotted protein found that this protein had no N-terminal. This enzyme showed either lytic or chitinase activities and had some different properties from those reported for goose lysozyme. The optimum pH and temperature on lytic activity of this lysozyme were pH 5 and 30 degrees C at ionic strength of 0.1, respectively. This lysozyme was stable up to 30 degrees C for lytic activity and the activity was completely abolished at 80 degrees C. The chitinase activity against glycol chitin showed dual optimum pH around 4.5 and 11. The optimum temperature for chitinase activity was at 50 degrees C and the enzyme was stable up to 40 degrees C.  相似文献   

5.
MANB36, a secrete endo-beta-1,4-D-mannanase produced by Bacillus subtilis B36, was purified to homogeneity from a culture supernatant and characterized. The optimum pH value for the mannanase activity of MANB36 is 6.4 and the optimum temperature is 50 degrees C. The enzyme activity of MANB36 is remarkably thermostable at 60 degrees C and the specific activity of MANB36 is 927.84 U/mg. Metal cations (except Hg2+ and Ag+), EDTA and 2-mercaptoethanol (2-ME) have no effects on enzyme activity. This enzyme exhibits high specificity with the substituted galactomannan locust bean gum (LBG). The gene encoding for MANB36, manB36, was cloned by PCR and sequenced. manB36 contains a single open reading frame (ORF) consisting of 1104 bp that encodes a protein of 367 amino acids. The predicted molecular weight of 38.13 kDa, calculated by the deduced protein of the gene manB36 without signal peptide, coincides with the apparent molecular weight of 38.0 kDa of the purified MANB36 estimated by SDS-PAGE. The mature protein of MANB36 has been expressed in Escherichia coli BL21 and the expressed mannanase has normal bioactivity.  相似文献   

6.
7.
This work presents the purification and characterization of an extracellular alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) produced by a new lactic acid bacterium: Lactobacillus manihotivorans able to produce L(+) lactic acid from starch. The molecular weight was found to be 135 kDa. The temperature and pH optimum were 55 degrees C and 5.5, respectively, and pI was 3.8. The alpha-amylase had good stability at pH range from 5 to 6 and the enzyme was sensitive to temperature, losing activity within 1 h of incubation at 55 degrees C. Higher thermal stability was observed when the enzyme was incubated in presence of soluble starch. K(m) value and activation energy were 3.44 mg/ml and 32.55 kJ/mol, respectively. Amylose was found to be a better substrate than soluble starch and amylopectin. Al(3+), Fe(3+), and Hg(2+) (10 mM) almost completely inhibited the alpha-amylase.  相似文献   

8.
An enzyme capable of dehalogenating vicinal haloalcohols to their corresponding epoxides was purified from the 3-chloro-1,2-propanediol-utilizing bacterium Arthrobacter sp. strain AD2. The inducible haloalcohol dehalogenase converted 1,3-dichloro-2-propanol, 3-chloro-1,2-propanediol, 1-chloro-2-propanol, and their brominated analogs, 2-bromoethanol, as well as chloroacetone and 1,3-dichloroacetone. The enzyme possessed no activity for epichlorohydrin (3-chloro-1,2-epoxypropane) or 2,3-dichloro-1-propanol. The dehalogenase had a broad pH optimum at about 8.5 and a temperature optimum of 50 degrees C. The enzyme followed Michaelis-Menten kinetics, and the Km values for 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol were 8.5 and 48 mM, respectively. Chloroacetic acid was a competitive inhibitor, with a Ki of 0.50 mM. A subunit molecular mass of 29 kDa was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With gel filtration, a molecular mass of 69 kDa was found, indicating that the native protein is a dimer. The amino acid composition and N-terminal amino acid sequence are given.  相似文献   

9.
β-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity,with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50℃ and was stable at temperatures lower than 40℃. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.  相似文献   

10.
An extracellular phosphatase was purified to homogeneity from the entomopathogenic fungus Metarhizium anisopliae with a 41.0% yield. The molecular mass and isoelectric point of the purified enzyme were about 82.5 kDa and 9.5 respectively. The optimum pH and temperature were about 5.5 and 75 degrees C when using O-phospho-L-tyrosine as substrate. The protein displayed high stability in a pH range 3.0-9.5 at 30 degrees C and was remarkably thermostable at 70 degrees C. The purified enzyme showed high activity on O-phospho-L-tyrosine and protein tyrosine phosphatase substrate monophosphate (a specific substrate of protein tyrosine phosphatase). Although one peptide of the phosphatase shared identity with one alkaline phosphatase of Neurospora crassa, its substrate specificity and inhibitor sensitivity indicate that the enzyme is a protein tyrosine phosphatase.  相似文献   

11.
A beta-glucosidase with cellobiase activity was purified to homogeneity from the culture filtrate of the mushroom Termtomyces clypeatus. The enzyme had optimum activity at pH 5.0 and temperature 65 degrees C and was stable up to 60 degrees C and within pH 2-10. Among the substrates tested, p-nitrophenyl-beta-D-glucopyranoside and cellobiose were hydrolysed best by the enzyme. Km and Vm values for these substrates were 0.5, 1.25 mM and 95, 91 mumol/min per mg, respectively. The enzyme had low activity towards gentiobiose, salicin and beta-methyl-D-glucoside. Glucose and cellobiose inhibited the beta-D-glucosidase (PNPGase) activity competitively with Ki of 1.7 and 1.9 mM, respectively. Molecular mass of the native enzyme was approximated to be 450 kDa by HPLC, whereas sodium dodecyl sulphate polyacrylamide gel electrophoresis indicated a molecular mass of 110 kDa. The high molecular weight enzyme protein was present both intracellularly and extracellularly from the very early growth phase. The enzyme had a pI of 4.5 and appeared to be a glycoprotein.  相似文献   

12.
A Bacillus subtilis AX20 from soil with ability to produce extracellular alpha-amylases was isolated. The characterization of microorganism was performed by biochemical tests as well as 16S rDNA sequencing. Maximum amylase activity (38 U/ml) was obtained at stationery phase when the culture was grown at 37 degrees C. The enzyme was purified to homogeneity with an overall recovery of 24.2% and specific activity of 4133 U/mg. The native protein showed a molecular mass of 149 kDa composed of a homodimer of 78 kDa polypeptide by SDS-PAGE. The optimum pH and temperature of the amylase were 6 and 55 degrees C, respectively. The enzyme was inhibited by Hg(2+), Ag(2+), and Cu(2+) and it did not show an obligate requirement of metal ions. The enzyme was not inhibited by EDTA or EGTA, suggesting that this enzyme is not a metalloenzyme. The end products of corn starch and soluble starch were glucose (70-75%) and maltose (20-25%). Rapid reduction of blue value and the end products suggest an endo mode of action for the amylase. The purified amylase shows interesting properties useful for industrial applications.  相似文献   

13.
A novel extracellular serine protease designated Pernisine was purified to homogeneity and characterized from the archaeon Aeropyrum pernix K1. The molecular mass, estimated by SDS-PAGE analysis and by gel filtration chromatography, was about 34 kDa suggesting that the enzyme is monomeric. Pernisine was active in a broad range of pH (5.0-12.0) and temperature (60-120 degrees C) with maximal activity at 90 degrees C and between pH 8.0 and 9.0. In the presence of 1 mM CaCl(2) the activity, as a function of the temperature, reached a maximum at 90 degrees C but at 120 degrees C the enzyme retained almost 80% of its maximal activity. Activity inhibition studies suggest that the enzyme is a serine metalloprotease and biochemical data indicate that Pernisine is a subtilisin-like enzyme. The protease gene, identified from the sequenced genome of A. pernix, was amplified from total genomic DNA by PCR technique to construct the expression plasmid pGEX-Pernisine. The Pernisine, lacking the leader sequence, was expressed in Escherichia coli BL21 strain as a fusion protein with glutathione- S-transferase. The biochemical properties of the recombinant enzyme were found to be similar to those of the native enzyme.  相似文献   

14.
A metalloprotease secreted by the moderately halophilic bacterium Salinivibrio sp. strain AF-2004 when the culture reached the stationary growth phase. This enzyme was purified to homogeneity by acetone precipitation and subsequent Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography. The apparent molecular mass of the protease was 31 kDa by SDS-PAGE, whereas it was estimated as approximately 29 kDa by Sephacryl S-200 gel filtration. The purified protease had a specific activity of 116.8 mumol of tyrosine/min per mg protein on casein. The optimum temperature and salinity of the enzyme were at 55 degrees C and 0-0.5 M NaCl, although at salinities up to 4 M NaCl activity still remained. The protease was stable and had a broad pH profile (5.0-10.0) with an optimum of 8.5 for casein hydrolysis. The enzyme was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), Pefabloc SC, chymostatin and also EDTA, indicating that it belongs to the class of serine metalloproteases. The protease in solutions containing water-soluble organic solvents or alcohols was more stable than that in the absence of organic solvents. These characteristics make it an ideal choice for applications in industrial processes containing organic solvents and/or salts.  相似文献   

15.
L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.  相似文献   

16.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

17.
The gene encoding a carboxylesterase from Anoxybacillus sp., PDF1, was cloned and sequenced. The recombinant protein was expressed in Escherichia coli BL21, under the control of isopropyl-β-D-thiogalactopyranoside-inducible T7 promoter. The enzyme, designated as PDF1Est, was purified by heat shock and ion-exchange column chromatography. The molecular mass of the native protein, as determined by SDS-PAGE, was about 26 kDa. PDF1Est was active under a broad pH range (pH 5.0-10.0) and a broad temperature range (25-90 °C), and it had an optimum pH of 8.0 and an optimum temperature of 60 °C. The enzyme was thermostable carboxylesterase, and did not lose any activity after 30 min of incubation at 60 °C. The enzyme exhibited a high level of activity with p-nitrophenyl butyrate with apparent K(m), V(max), and K(cat) values of 0.348 ± 0.030 mM, 3725.8 U/mg, and 1500 ± 54.50/s, respectively. The effect of some chemicals on the esterase activity indicated that Anoxybacillus sp. PDF1 produce an carboxylesterase having serine residue in active site and -SH groups in specific sites, which are required for its activity.  相似文献   

18.
Invertase (beta-fructofuranosidase, EC 3.2.1.26) was purified from the flowers of Woodfordia fruticosa, which is used to prepare certain fermented Ayurvedic drugs. The enzyme was purified to near homogeneity as judged by native PAGE with a yield of 10.7%, using (NH4)2SO4 fractionation, followed by gel filtration through Sepharose 4B and DEAE cellulose chromatography at pH 6.8 and 4.42. The molecular mass of the purified enzyme as determined by elution through Sepharose 4B gel column was found to be approximately 280 kDa. SDS-PAGE of the purified enzyme showed that the enzyme is composed of three subunits with molecular mass of 66, 43 and 40 kDa. The enzyme showed a broad pH optimum between 4.0-7.0. Optimum assay temperature was 37 degrees C and above 45 degrees C, the enzyme activity slowly declined and inactivated around 80 degrees C. The apparent Km value of the enzyme for sucrose was 160 mM.  相似文献   

19.
An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed significantly from the T. saccharolyticum B6A-RI xylose isomerase suggested that one or more of the observed amino acid changes was responsible for this observed difference.  相似文献   

20.
Bonete MJ  Ferrer J  Pire C  Penades M  Ruiz JL 《Biochimie》2000,82(12):1143-1150
An NAD-dependent D-2-hydroxyacid dehydrogenase (EC 1.1.1.) was isolated and characterized from the halophilic Archaeon Haloferax mediterranei. The enzyme is a dimer with a molecular mass of 101.4 +/- 3.3 kDa. It is strictly NAD-dependent and exhibits its highest activity in 4 M NaCl. The enzyme is characterized by a broad substrate specificity 2-ketoisocaproate and 2-ketobutyrate being the substrates with the higher Vmax/Km. When pyruvate and 2-ketobutyrate were the substrates the optimal pH was acidic (pH 5) meanwhile for 2-ketoisocaproate maximum activity was achieved at basic pH between 7.5 and 8.5. The optimum temperature was 52 degrees C and at 65 degrees C there was a pronounced activity decrease. This new enzyme can be used for the production of D-2-hydroxycarboxylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号