首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of the tolQ gene in the import of cloacin DF13 across the outer membrane of Escherichia coli strains expressing the IutA receptor. The IutA outer-membrane protein is the receptor for the siderophore ferric aerobactin and also binds cloacin DF13, a bacteriocin produced by strains of Enterobacter aerogenes. In this report we present evidence that tolQ is required for the internalization of cloacin DF13 upon binding to IutA but it is not involved in the transport of ferric aerobactin.  相似文献   

2.
IutA is the outer membrane protein receptor for ferric aerobactin and the bacteriocin cloacin DF13. Although the same receptor is shared, ferric aerobactin transport across the outer membrane in Escherichia coli is TonB dependent, whereas cloacin DF13 transport is not. We have recently observed that tolQ is required for cloacin DF13 susceptibility (J.A. Thomas and M.A. Valvano, FEMS Microbiol. Lett. 91:107-112, 1992). In this study, we demonstrate that the genes tolQ, tolR, and tolA, but not tolB, tolC, and ompF, are required for the internalization of cloacin DF13 and they are not involved in the transport of ferric aerobactin.  相似文献   

3.
Mutations at several different chromosomal locations affect expression of the major outer membrane porin proteins (OmpF and OmpC) of Escherichia coli K12. Those that map at 21 and 47 minutes define the structural genes for OmpF and OmpC, respectively. A third locus, ompB, is defined by mutations that map at 74 minutes. The ompB locus contains two genes whose products regulate the relative amounts of ompF and ompC expression. One of these genes, ompR, encodes a positive regulatory protein that interacts at the ompF and ompC promoters. Mutations in ompR exhibit an OmpF- OmpC- or an OmpF+ OmpC- phenotype. The product of the second gene, envZ, affects regulation of the porin proteins in an unknown manner. Previously isolated mutations in envZ exhibit an OmpF- OmpC+ phenotype and also have pleiotropic effects on other exported proteins. In the presence of local anaesthetics such as procaine, wild-type strains exhibit properties similar to these envZ mutants, i.e. OmpF- OmpC+. Using ompF-lac fusion strains, we have exploited this procaine effect to isolate two new classes of envZ mutations. One of these classes exhibits an OmpF+ OmpC- phenotype. The other allows expression of both OmpF and OmpC but alters the relative amounts found under various growth conditions. Like previously isolated envZ mutations, these also affect regulation of other exported proteins, such as lambda receptor. These results permit a more detailed analysis of the omp regulon and they may shed light on one of the mechanisms by which local anaesthetics exert their effect.  相似文献   

4.
Several Klebsiella pneumoniae strains which produced enterochelin but not aerobactin were nevertheless sensitive to cloacin DF13. In contrast, a strain of serotype K1:O1 which produced both siderophores was cloacin-resistant. Loss by mutation of the O1 but not K1 antigen rendered this strain cloacin-sensitive, indicating that the O1 antigen prevented access of cloacin to the cloacin/aerobactin receptor. Unlike the K1:O1 strain, the aerobactin-negative strains failed to hybridize in a colony blot assay with an aerobactin receptor gene probe prepared from pColV-K30. However, antisera raised against the 74 kDa pColV-K30 aerobactin receptor cross-reacted with a 76 kDa outer-membrane protein in each K. pneumoniae strain. In addition to the 76 kDa protein, the K1:O1 strain also produced a strongly cross-reacting 74 kDa protein. To determine whether these aerobactin-negative strains could use aerobactin, mutants unable to synthesize siderophores were isolated. Aerobactin promoted the growth of these mutants in iron-deficient media. The evidence presented suggests that some K. pneumoniae strains produce an aerobactin iron-uptake system without apparent production of aerobactin and which is probably based on a 76 kDa receptor, the gene for which does not hybridize with aerobactin receptor gene encoded on pColV-K30.  相似文献   

5.
Escherichia coli outer membrane protein K is a porin.   总被引:6,自引:5,他引:1       下载免费PDF全文
Protein K is an outer membrane protein found in pathogenic encapsulated strains of Escherichia coli. We present evidence here that protein K is structurally and functionally related to the E. coli K-12 porin proteins (OmpF, OmpC, and PhoE). Protein K was found to cross-react with antibody to OmpF protein and to share 8 out of 17 peptides in common with the OmpF protein. Strains that are OmpC porin- and OmpF porin- and contain protein K as their major outer membrane protein have increased rates of uptake of nutrients and a faster growth rate relative to the parental porin- strain. The protein K-containing strains are at least 1,000-fold more sensitive to colicins E2 and E3 than is the porin -deficient strain. These data suggest that protein K is a functional porin in E. coli. The porin function of protein K was also demonstrated in vitro, using black lipid membranes. Protein K increased the conductance in these membranes in discrete, uniform steps characteristic of channels with a size of about 2 nS.  相似文献   

6.
A total of 230 Salmonella strains were screened for enterobactin and aerobactin production, sensitivity to bacteriocins and resistance to antibiotics. All the isolates produced the phenolate siderophore enterobactin. Amongst these, 74 strains, most belonging to S. enteritidis, were sensitive to colicin B. Only 26 isolates, all belonging to S. wien, produced an additional iron chelator, i.e. the siderophore aerobactin, and 22 out of these were sensitive to cloacin DF13. Analysis of iron repressible outer membrane proteins and plasmid profiles in S. wien strains showed that the expression of a 74-kDa iron-repressible outer membrane protein and the presence of large plasmids were associated with multiple antibiotic resistance, aerobactin production and sensitivity to cloacin DF13. The incidence of aerobactin-producing strains among S. wien isolates was higher during years 1974-1985; the epidemiological implications of these results are discussed.  相似文献   

7.
OmpC and OmpF, outer membrane porin proteins, are important in the maintenance of the cell surface structure of Escherichia coli cells [T. Nogami and S. Mizushima, J. Bacteriol., 156, 402 (1983)]. Mutants lacking both proteins are unstable and frequently revert or mutate to strains which either have regained one or both of the proteins or constitutively produce PhoE, another porin protein. In the present work, the structural importance of PhoE was studied in relation to OmpC. and OmpF. The strain devoid of both OmpC and OmpF was highly susceptible to Tris-HCl buffer at a concentration of 120 mm in terms of viability and cell structure. This strain was also susceptible to osmotic shock. In contrast, the strain possessing PhoE in place of OmpC/OmpF was as stable as the strain possessing OmpC/OmpF against these treatments. PhoE, like OmpC and OmpF, was assembled into a hexagonal lattice with lipopolysaccharide that covered the peptidoglycan sacculus. These results suggest that PhoE can take the place of OmpC/OmpF in the maintenance of the cell surface structure. The importance of porins in general in the maintenance of the cell structure is discussed.  相似文献   

8.
BothEnterobacter cloacae H478 andKlebsiella edwardsii S15 were shown to harbour a relatively large conjugative plasmid that coded for cloacin DF13-susceptibility and the production and uptake of a hydroxamate iron chelator, most probably aerobactin. Protein-blotting experiments with antiserum raised against the purified cloacin DF13/aerobactin receptor protein fromEscherichia coli (Co1V-K30) revealed that the corresponding outer membrane receptor proteins ofEnt. cloacae H478 andK. edwardsii S15 had apparent mol wts of 85 000 and 76000, respectively.E. coli transconjugants harbouring either the plasmid fromEnt. cloacae H478 orK. edwardsii S15 expressed a cloacin DF13/aerobactin outer membrane receptor protein with a mol wt of 74000. The receptor protein encoded by theEnt. cloacae andK. edwardsii plasmids were immunologically more related to each other than to the pCo1V-K30-encoded receptor protein.  相似文献   

9.
Iron-starved cultures of Enterobacter cloacae produced two siderophores, identified as enterochelin and aerobactin. The aerobactin was excreted in larger amounts than was enterochelin, and it was synthesized preferentially in the late logarithmic and stationary growth phases under iron-deficient conditions. Enterochelin was synthesized by cultures in the logarithmic phase of growth and preferentially in medium with 1 microM ferric chloride. Both siderophores appeared to be excreted immediately after their synthesis, since no intracellular aerobactin or enterochelin could be detected. The killing activity of the bacteriocin cloacin DF13 was inhibited by aerobactin. It was shown that aerobactin and cloacin DF13 bound to the same receptor sites located in the outer membrane. The synthesis of these receptor sites was induced by iron limitation. We conclude that the receptor for the uptake of aerobactin also functions as receptor for cloacin DF13.  相似文献   

10.
Abstract Bacteriocin susceptibilities indicate that during cloacin DF13 uptake the F porin of Enterobacter cloacae plays a similar role to that reported for the OmpF porin of Escherichia coli during colicin A entry. The translocatory activities of these two porins during the bacteriocin uptake can be substituted by the porins D and OmpC, respectively, under conditions not requiring the receptor binding step. Using anti-peptide antibodies, a peptide located in the internal loop L3 of the Escherichia coli OmpF porin was identified in the D and F porins of Enterobacter cloacae. The results demonstrated the existence of a close relationship between porins in terms of both antigenic determinants and bacteriocin susceptibilities.  相似文献   

11.
12.
Serratia marcescens is a nosocomial bacterium with natural resistance to a broad spectrum of antibiotics, making treatment challenging. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, controlled in part by OmpF and OmpC porin proteins. To investigate the direct role of these porins in the diffusion of antibiotics across the outer membrane, we have created an ompF-ompC porin-deficient strain of S. marcescens. A considerable similarity between the S. marcescens porins and those from other members of Enterobacteriaceae was detected by sequence alignment, with the exception of a change in a conserved region of the third external loop (L3) of the S. marcescens OmpC protein. Serratia marcescens OmpC has aspartic acid instead of glycine in position 112, methionine instead of aspartic acid in position 114, and glutamine in position 124, while in S. marcescens OmpF this is a glycine at position 124. To investigate the role of amino acid positions 112, 114, and 124 and how the observed changes within OmpC porin may play a part in pore permeability, 2 OmpC sites were altered in the Enterobacteriaceae consensus (D112G and M114D) through site-directed mutagenesis. Also, Q124G in OmpC, G124Q in OmpF, and double mutants of these amino acid residues were constructed. Antibiotic accumulation assays and minimal inhibitory concentrations of the strains harboring the mutated porins were performed, while liposome swelling experiments were performed on purified porins. Our results demonstrate that the amino acid at position 114 is not responsible for either antibiotic size or ionic selection, the amino acid at position 112 is responsible for size selection only, and position 124 is involved in both size and ionic selection.  相似文献   

13.
The binding of lactoferrin, an iron-binding glycoprotein found in secretions and leukocytes, to the outer membrane of Gram-negative bacteria is a prerequisite to exert its bactericidal activity. It was proposed that porins, in addition to lipopolysaccharides, are responsible for this binding. We studied the interactions of human lactoferrin with the three major porins of Escherichia coli OmpC, OmpF, and PhoE. Binding experiments were performed on both purified porins and porin-deficient E. coli K12 isogenic mutants. We determined that lactoferrin binds to the purified native OmpC or PhoE trimer with molar ratios of 1.9 +/- 0.4 and 1.8 +/- 0.3 and Kd values of 39 +/- 18 and 103 +/- 15 nM, respectively, but not to OmpF. Furthermore, preferential binding of lactoferrin was observed on strains that express either OmpC or PhoE. It was also demonstrated that residues 1-5, 28-34, and 39-42 of lactoferrin interact with porins. Based on sequence comparisons, the involvement of lactoferrin amino acid residues and porin loops in the interactions is discussed. The relationships between binding and antibacterial activity of the protein were studied using E. coli mutants and planar lipid bilayers. Electrophysiological studies revealed that lactoferrin can act as a blocking agent for OmpC but not for PhoE or OmpF. However, a total inhibition of the growth was only observed for the PhoE-expressing strain (minimal inhibitory concentration of lactoferrin was 2.4 mg/ml). These data support the proposal that the antibacterial activity of lactoferrin may depend, at least in part, on its ability to bind to porins, thus modifying the stability and/or the permeability of the bacterial outer membrane.  相似文献   

14.
Induction of cloacin DF13 synthesis in Escherichia coli harbouring plasmid CloDF13 results in the release of cloacin DF13, inhibition of growth and ultimately in lysis of the host cells. Expression of the pCloDF13-encoded protein H is essential for both the release of cloacin DF13 and the lysis of the cells. The divalent cations Mg2+ and Ca2+ interfered with the mitomycin C-induced protein H-dependent lysis, but hardly affected the release of cloacin DF13. Essentially all of the bacteriocin was released from the cells before a detectable degradation of the peptidoglycan occurred, independent of the presence of mitomycin C. Experiments with phospholipase A mutants revealed that activation of detergent-resistant phospholipase A was essential for the export of cloacin DF13 across the outer membrane and the lysis of induced cells. Transport of cloacin DF13 across the cytoplasmic membrane was mainly dependent on protein H. A revised model for the excretion of cloacin DF13 is presented.  相似文献   

15.
Extraction of the crude cell envelope fraction of cloacin DF13-susceptible Enterobacter cloacae strain 02 with Triton X-100 and ethylenediaminetetraacetate solubilized an outer membrane fraction which neutralized the lethal activity of cloacin DF13. A similar fraction could not be isolated from strains known to be lacking functional cloacin DF13 receptors. On this basis the isolated outer membrane fraction was assumed to contain the specific cloacin DF13 receptor. The receptor was purified to homogeneity by acetone precipitation and affinity chromatography, using cloacin DF13 as a ligand. The purified receptor was identified as a protein which consisted of a single polypeptide chain with an apparent molecular weight of 90,000 and a preponderance of acidic amino acids (pI = 5.0). The interaction of equimolar amounts of purified receptor and cloacin DF13 in vitro resulted in a complete, irreversible neutralization of the lethal activity of the bacteriocin. This interaction showed a temperature optimum at 43 degrees C but was only slightly affected by variation of the pH between 5.0 and 8.5 or by increasing the ionic strength of the incubation buffer. The receptor had no neutralizing activity towards other bacteriocins, such as colicin E1 or colicin E3.  相似文献   

16.
Escherichia coli cells lacking the OmpF and OmpC proteins, porin proteins of the outer membrane, are often unstable and easily revert to strains which either have regained one or both of these proteins or contain a new outer membrane protein. The structural importance of porin proteins in the cell surface was studied in the present work. Tris-hydrochloride buffer at a concentration of 120 mM caused deformation of the cell surface of a strain lacking these porins; the undulated appearance of the negatively stained cell surface changed to a smooth and expanded form. The Tris-induced deformation was seldom observed with either the wild-type strain or a pseudorevertant that possessed the OmpF protein. The role of the OmpF protein in stabilizing the cell surface against Tris treatment could be slightly taken over by the LamB protein, which shares a number of unique properties with the former proteins. The deformation of the cell surface by Tris-hydrochloride buffer was accompanied by a loss of viability, the lethal damage being especially significant when the cells lacked porins. Upon induction with maltose, cells with the undulated appearance could absorb lambda phages, whereas the deformed cells could not. These results suggest that the instability of cells lacking porins is primarily due to a structural defect of the outer membrane.  相似文献   

17.
A novel OmpY porin was predicted based on the Yersinia pseudotuberculosis genome analysis. Whereas it has the different genomic annotation such as "outer membrane protein N" (ABS46310.1) in str. IP 31758 or "outer membrane protein C2, porin" (YP_070481.1) in str. IP32953, it might be warranted to rename the OmpN/OmpC2 to OmpY, "outer membrane protein Y", where letter "Y" pertained to Yersinia. Both phylogenetic analysis and genomic localization clearly support that the OmpY porin belongs to a new group of general bacterial porins. The recombinant OmpY protein with its signal sequence was overexpressed in porin-deficient Escherichia coli strain. The mature rOmpY was shown to insert into outer membrane as a trimer. The OmpY porin, isolated from the outer membrane, was studied employing spectroscopic, electrophoretic and bilayer lipid membranes techniques. The far UV CD spectrum of rOmpY was essentially identical to that of Y. pseudotuberculosis OmpF. The near UV CD spectrum of rOmpY was weaker and smoother than that of OmpF. The rOmpY single-channel conductance was 180 ± 20 pS in 0.1 M NaCl and was lower than that of the OmpF porin. As was shown by electrophoretic and bilayer lipid membrane experiments, the rOmpY trimers were less thermostable than the OmpF trimers. The porins differed in the trimer-monomer transition temperature by about 20°C. The three-dimensional structural models of the Y. pseudotuberculosis OmpY and OmpF trimers were generated and the intra- and intermonomeric interactions stabilizing the porins were investigated. The difference in the thermal stability of OmpY and OmpF trimers was established to correlate with the difference in intermonomeric polar contacts.  相似文献   

18.
Selection was performed for resistance to a phage, Ox2, specific for the Escherichia coli outer membrane protein OmpA, under conditions which excluded recovery of ompA mutants. All mutants analyzed produced normal quantities of OmpA, which was also normally assembled in the outer membrane. They had become essentially resistant to OmpC and OmpF-specific phages and synthesized these outer membrane porins at much reduced rates. The inhibition of synthesis acted at the level of translation. This was due to the presence of lipopolysaccharides (LPS) with defective core oligosaccharides. Cerulenin blocks fatty acid synthesis and therefore that of LPS. It also inhibits synthesis of OmpC and OmpF but not of OmpA (C. Bocquet-Pagès, C. Lazdunski, and A. Lazdunski, Eur. J. Biochem. 118:105-111, 1981). In the presence of the antibiotic, OmpA synthesis and membrane incorporation remained unaffected at a time when OmpC and OmpF synthesis had almost ceased. The similarity of these results with those obtained with the mutants suggests that normal porin synthesis is not only interfered with by production of mutant LPS but also requires de novo synthesis of LPS. Since synthesis and assembly of OmpA into the outer membrane was not affected in the mutants or in the presence of cerulenin, association of this protein with LPS appears to occur with outer membrane-located LPS.  相似文献   

19.
A phage K3-resistant isolate from Escherichia coli P678-54 was devoid of both the OmpA and OmpC proteins but had high levels of the OmpF protein. Associated with these changes, the strain showed increased sensitivity to inhibition by detergents and greatly increased sensitivity to Cu2+. Introduction of the ColV, I-K94 plasmid into this mutant produced a derivative with markedly increased resistance to Cu2+ ions but unchanged detergent sensitivity. Analysis of membranes showed that the ColV, I-K94+ derivative had essentially no OmpF protein in its outer membrane. A ca 36 K outer membrane protein was present which resembled the OmpC protein in size and failure to dissociate in SDS at low temperature. It was distinct from the OmpC protein, however, in failing to allow either tetracycline uptake or the adsorption of T4-type phages. The possible significance of OmpF porin derepression (and its reversal by ColV, I-K94) for enterobacterial survival in aquatic situations is discussed.  相似文献   

20.
Expression of the ompF and ompC genes, which encode the major outer membrane proteins, OmpF and OmpC, respectively, is affected in a reciprocal manner by the osmolarity of the growth medium. This osmoregulation is mediated by the OmpR protein, a positive regulator of both genes, which is encoded by the ompR gene. Structural and functional properties of this regulatory protein were studied through complementation analysis of the wild-type and five mutant ompR genes that exhibited differences in osmoregulation of the expression of the OmpF and OmpC proteins. Complementation was carried out with combinations of a host strain and a plasmid, each of which carried either the wild-type or a mutant ompR gene. In some combinations, negative complementation was observed. For example, ompR1, a deletion mutation with an OmpF- OmpC- phenotype, was dominant to OmpF+ or OmpC+ phenotypes conferred by other ompR genes. Positive complementation of two mutant ompR genes was also observed in other combinations, when the two mutations were distantly located from each other on the OmpR protein. These results, together with other observations, support the view that the OmpR protein has a two-domain structure, each domain exhibiting a different role in the expression of the OmpF and OmpC proteins, and that this protein takes a multimeric structure as a functional unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号