首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
The influence of low level red laser irradiation of Quails japanese embryos on lipid peroxidation level and free radicals concentration in the liver of young quails was estimated. It is detected that irradiation of the embryos in the dose of 15 mJ leads to the significant increase of peroxide lipid level and free radicals contents in the liver of one-day quails. In the liver of three-weeks quails an expressed antioxidant effect of red laser light irradiation of embryos is detected. The decrease of lipid peroxidation products and synthesis of ceruloplasmin in the liver of experimental group poultry confirm it. These changes are accompanied with cytochrome P-450 level increase and don't lead to inhibition of energetic system.  相似文献   

2.
The intensity of lipid peroxidation, activity of some enzymes antioxidant system - superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, amount of recovered glutathione and ceruloplasmin in the blood serum of ostriches in a period from 6- to 60-month age were first investigated. The increase of concentration of lipid peroxidation products is accompanied by the decline of amount of general lipids in the ostriches blood. Every life cycle period of ostriches is characterized by the indexes of functioning of the antioxidant system and intensity of accumulation intermediate lipid peroxidation products inherent in it. The pubescence period and intensive oviposition are characterized by the increase of products lipid peroxidation concentration and decrease of antioxidant enzymes activity, which can testify to the exhaustion of protective possibilities of enzymatic link of antioxidant defence.  相似文献   

3.
The dynamics of functioning of the lipid peroxidation <--> antioxidant activity system was studied during the tumor growth in the blood, liver and NK/Ly cells in mice fed with amaranth oil (100 microL/100 g, once a day, 10 days before inoculation and during tumor growth for 14 days). Different effects on antioxidant activity were demonstrated. Activity of the antioxidant enzymes in hepatocytes of mice fed with amaranth oil was aimed at maintenance of antioxidant defence in tumor growth. This effect was achieved owing to the marked increase in superoxide dismutase, preserved catalase and decreased glutathione peroxidase activities with simultaneous increase in hydroperoxides levels and decrease of thiobarbituric acid-reactive subspecies. Changes observed in NK/Ly lymphoma cells were directed to providing a higher prooxidant activity than in the liver cells. Modification of antioxidant activity induced by amaranth oil can maintain oxygen homeostasis, morphofunctional state and inhibit tumor cells proliferation.  相似文献   

4.
Catechol-containing antioxidants are able to protect against lipid peroxidation by nonenzymatic scavenging of free radicals with their catechol moiety. During their antioxidant activity, catechol oxidation products such as semiquinone radicals and quinones are formed. These oxidation products of 4-methylcatechol inactivate the GSH-dependent protection against lipid peroxidation and the calcium sequestration in liver microsomes. This effect is probably due to arylation by oxidation products of 4-methylcatechol of free thiol groups of the enzymes responsible for the GSH-dependent protection and calcium sequestration, i.e. the free radical reductase and calcium ATPase. It is concluded that a catechol-containing antioxidant might shift radical damage from lipid peroxidation to sulfhydryl arylation.  相似文献   

5.
In this work, the effect of chronic intraperitoneal administration of chlorpromazine (5 and 10 mg/kg) on the antioxidant enzymes superoxide dismutase (SOD), catalase (CA), glutathione reductase (GR), and glutathione peroxidase (GP); lipid peroxidation; and lipofuscin accumulation in the brains of rats ages 6, 9, and 12 months was studied. Chlorpromazine increased the activities of SOD, GR, and GP in particulate fraction from cerebrum, cerebellum, and brain stem in a dose-dependent manner. While GR and SOD associated with soluble fraction increased, GP associated with soluble fraction was not affected. CA did not change after chlorpromazine administration in any regions of the brain of rats from all age groups. Chlorpromazine, thus, had a somewhat different action on antioxidant enzymes in different subcellular fractions. Chlorpromazine inhibited lipid peroxidation, both in vivo and in vitro, and it also inhibited accumulation of lipid peroxidation fluorescent products (lipofuscin), which was studied histochemically and biochemically as well. The data indicate that chlorpromazine inhibition of lipid peroxidation and of accumulation of lipofuscin can result from elevation of the activity of brain antioxidant enzymes.  相似文献   

6.
It has been shown, that the total X-ray irradiation in the dozes of 0.5 and 1 Gy influences on the content of lipid peroxidation products and enzymatic activity of antioxidant system in rat spleen and thymus cells. The influence of preparations "AMMIVIT" and "Ceruloplasmin" on these processes is investigated also. So, the animals feeding by the vitamin concentrate "AMMIVIT" have lead to increase of MDA level (a final product of lipid peroxidation) and the overactivity of some antioxidant enzymes in rat spleen and thymus cells. Injection of the preparation "Ceruloplasmin" to experimental animals up 1 hour before the irradiation has normalized LPO intensity and activity of AO enzymes.  相似文献   

7.
Free radicals participate in the development of cancer. When the antioxidant defence system is not longer capable to destroy free radicals they may cause lipid and protein oxidation. Lipid peroxidation products also modify proteins. In such a situation the proteolytic-antiproteolytic balance existing in the blood may be changed. Therefore the aim of this study was to examine the correlation between antioxidant status and activity of proteolytic enzymes and their inhibitors in cases of colorectal cancer. This study included 55 patients with colorectal cancer. The blood was taken before surgery and plasma was collected. Total antioxidant status, the levels of lipid peroxidation products (malondialdehyde and 4-hydroxynonenal) and activity of cathepsin G, elastase and their inhibitors (alpha-1-antitrypsin and alpha-2-macroglobulin) were determined in plasma. It was shown that during the development of cancer total antioxidant status was signficantly decreased while lipid peroxidation products were increased. Activity of alpha-2-macroglobulin was decreased and activity of determined enzymes was not significantly changed. The observed changes indicate a shift in proteolytic-antiproteolytic balance which may enhance carcinogenesis.  相似文献   

8.
The objective of this study is to determine the effect of lead (pb) on antioxidant enzymes and lipid peroxidation products in different regions of rat brain. Wistar male rats were treated with lead acetate (500 ppm) through drinking water for a period of 8 weeks. Control animals were maintained on sodium acetate. Treated and control rats were sacrificed at intervals of 1st, 4th and 8th week and the whole brains were dissected on ice into four regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem. Antioxidant enzymes namely catalase and superoxide dismutase in all the four regions of brain were determined. In addition, lipid peroxidation products were also estimated. The results indicated a gradual increase in the activity of antioxidant enzymes in different regions of the brain and this response was time-dependent. However, the increase was more in the cerebellum and the hippocampus compared to other regions of the brain. The lipid peroxidation products also showed a similar trend suggesting increased effect of lead in these two regions of the brain. The data indicated a region-specific oxidative stress in the brain exposed to lead.  相似文献   

9.
We studied the level of lipid peroxidation and the activity of antioxidant enzymes (superoxide dismutase and catalase) in various tissues of adult Xenopus laevis after an initial exposure to hyperbaric oxygenation at the developmental stage 38. We have found that irrespective to the mode of treatment, the level of lipid peroxidation and activity of antioxidant enzymes in the brain, lungs, and blood of these animals were higher as compared to control animals. We demonstrate that, after the exposure of adult animals to hyperoxia, if they were earlier subjected to hyperbaric oxygenation (0.2 MPa) at stage 38, there was no intensification of lipid peroxidation or changes in the activity of superoxide dismutase and catalase. In adult animals initially subjected to hyperbaric oxygenation at the same stage of development but at the pressure--0.7 MPa, the second exposure to hyperoxia led to a drastic intensification of lipid peroxidation in the brain; in some animals, an increased level of lipid peroxidation products in the lungs was observed.  相似文献   

10.
Influenza virus infection is associated with development of oxidative stress in lung and blood plasma, viz. increase of primary and secondary lipid peroxidation products. It was established that rimantadine treatment led to a decrease of the products of lipid peroxidation in tissues of mice experimentally infected with influenza virus A/Aichi/2/68 (H3N2). The effect is strongest in blood plasma (a decrease of about 50%) and weaker in the lung (about 20%). To elucidate the mechanism of this action of rimantadine, experiments were carried out with some model systems. The capability of rimantadine to scavenge superoxide radicals (scavenging properties) was studied in a system of xanthine-xanthine oxidase to generate superoxide. The amount of superoxide was measured spectrophotometrically by the NBT-test and chemiluminesce. Rimantadine does not show scavenging properties and its antioxidant effect observed in vivo, is not a result of its direct action on the processes of lipid peroxidation and/or interaction with antioxidant enzymes. The antioxidant properties of rimantadine were investigated by measurement of induced lipid peroxidation in a Fe2+ and (Fe2+ - EDTA) system with an egg liposomal suspension. Our findings with model systems do not prove an antioxidant or prooxidant effect of the drug on the processes of lipid peroxidation. Apparently, the observed antioxidant effect of rimantadine in vivo is not connected directly with free radical processes in the organism.  相似文献   

11.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

12.
We have investigated the protective effect of vitamin C and E together supplementation on oxidative stress and antioxidant enzyme activities in the liver of streptozotocin-induced diabetic rats, unsupplemented diabetic and control rats. We also determined the levels of both the vitamins and oxidative stress in plasma. Vitamin supplementation in diabetic rats lowered plasma and liver lipid peroxidation, normalised plasma vitamin C levels and raised vitamin E above normal levels. In liver, the activity of glutathione peroxidase was raised significantly and that of glutathione-S-transferase was normalised by vitamin supplementation in diabetic rats. The levels of lipid peroxidation products in plasma and liver of vitamin-supplemented diabetic rats and activities of antioxidant enzymes in liver suggest that these vitamins reduce lipid peroxidation by quenching free radicals.  相似文献   

13.
Two substances which are products of the isoprenoid pathway, can participate in lipid peroxidation. One is digoxin, which by inhibiting membrane Na(+)-K+ ATPase, causes increase in intracellular Ca2+ and depletion of intracellular Mg2+, both effects contributing to increase in lipid peroxidation. Ubiquinone, another products of the pathway is a powerful membrane antioxidant and its deficiency can also result in defective electron transport and generation of reactive oxygen species. In view of this and also in the light of some preliminary reports on alteration in lipid peroxidation in neuropsychiatric disorders, a study was undertaken on the following aspects in some of these disorders (primary generalised epilepsy, schizophrenia, multiple sclerosis, Parkinson's disease and CNS glioma)--1) concentration of digoxin, ubiquinone, activity of HMG CoA reductase and RBC membrane Na(+)-K+ ATPase 2) activity of enzymes involved in free radical scavenging 3) parameters of lipid peroxidation and 4) antioxidant status. The result obtained indicates an increase in the concentration of digoxin and activity of HMG CoA reductase, decrease in ubiquinone levels and in the activity of membrane Na(+)-K+ ATPase. There is increased lipid peroxidation as evidenced from the increase in the concentration of MDA, conjugated dienes, hydroperoxides and NO with decreased antioxidant protection as indicated by decrease in ubiquinone, vit E and reduced glutathione in schizophrenia, Parkinson's disease and CNS glioma. The activity of enzymes involved in free radical scavenging like SOD, catalase, glutathione peroxidase and glutathione reductase is decreased in the above diseases. However, there is no evidence of any increase in lipid peroxidation in epilepsy or MS. The role of increased operation of the isoprenoid pathway as evidenced by alteration in the concentration of digoxin and ubiquinone in the generation of free radicals and protection against them in these disorders is discussed.  相似文献   

14.
The cerebral free radical oxidation processes on 40 Wistar rats-males were studied by evaluation of thiobarbituric-active products of lipid peroxidation level, superoxide dismutase and glutathione peroxidase activity in sensomotor cortex, hypothalamus and brain stem. Was found that differential stability of rats to motor activities during single intensive physical loading is due by reactivity of free radicals oxidation, associated with decrease of cerebral antioxidant enzymes activity. Long term intensive physical loading may accompanied by reducing of reserve possibilities of antioxidant enzymes an cerebral structures, what possible play potential role in pathogenetic mechanisms of osteoarthritis.  相似文献   

15.
In order to gain insight into the antioxidant effect of cinnamon (Cinnamomum verum; Lauraceae) and cardamom (Amomum subulatum; Zingiberaceae) hepatic and cardiac antioxidant enzymes, glutathione (GSH) content and lipid conjugated dienes were studied in rats fed high fat diet along with cinnamon or cardamom. The antioxidant enzyme activities were found to be significantly enhanced whereas GSH content was markedly restored in rats fed a fat diet with spices. In addition, these spices partially counteracted increase in lipid conjugated dienes and hydroperoxides, the primary products of lipid peroxidation. Thus, it appears that these spices exert antioxidant protection through their ability to activate the antioxidant enzymes.  相似文献   

16.
The objective of this study was to compare the effect of cholesterol feeding of rats and rabbits. The levels of lipid peroxidation products and oxysterols in the plasma of the two species plus the antioxidant enzyme activities in the liver and erythrocytes were measured to explain their different susceptibilities to atherosclerosis. Our study showed that rats are less susceptible than are rabbits to the atherogenic effect of a cholesterol-rich diet because of differences in lipid peroxidation products as well as antioxidant enzymes activities in their livers. In rabbits, cholesterol feeding produced severe hypercholesterolemia (43-fold increase) and increased plasma and liver lipid peroxidation. Total as well as the individual oxysterol contents of 7alpha-, 7beta-hydroxycholesterol, alpha-epoxy, beta-epoxycholesterol, cholestanetriol, 7-keto, and 27-hydroxycholesterol significantly increased in the plasma of hypercholesterolemic (HC) rabbits. Erythrocyte glutathione peroxidase (GSH-Px) activity significantly decreased whereas catalase activity significantly increased in HC rabbits. In rats cholesterol feeding increased the plasma cholesterol only twofold and had no effect on plasma or liver lipid peroxidation. Only 7alpha- and 7beta-hydroxycholesterol increased and no change was observed in any of the antioxidant enzymes activity in the erythrocytes. Although cholesterol feeding caused a 10-fold increase of liver cholesterol as ester in both rats and rabbits, the antioxidant enzyme GSH-Px and catalase activities in the liver significantly increased in rats but significantly decreased in rabbits. The increase of GSH-Px and catalase activities in the liver of cholesterol fed rats could have a protective role against oxidation, thus preventing the formation of lipid peroxidation and oxysterols.  相似文献   

17.
Adaptation to continuous hypoxia under mid-mountain conditions (altitude 2100 m) decreases the content of lipid peroxidation products and the activity of superoxide dismutase and catalase in rat heart, liver, and brain, with a concomitant decline in the resistance to reperfusion arrhythmias. On the contrary, adaptation to intermittent hypoxia in the altitude chamber increases the activity of the antioxidant enzymes in the same organs, while the content of peroxidation products remains normal; at the same time, the heart becomes more resistant to reperfusion arrhythmias. The mechanism is discussed that ensures enhanced antioxidant protection in adaptation to intermittent hypoxia.  相似文献   

18.
1. The seasonal variations in the level of antioxidant compounds (glutathione (GSH), vitamin E, carotenoids) and in the activity of antioxidant enzymes, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), GSH-peroxidase (EC 1.11.1.9) in the digestive gland of mussels (Mytilus sp.) were evaluated. The lipid peroxidation process was also measured by determining the tissue concentration of malondialdehyde (MDA). 2. The physiological fluctuations of the antioxidant defence systems were inversely related to the accumulation of lipid peroxidation products (MDA) in the tissue. The observed seasonal variations are presumably related to the changing metabolic status of the animals, itself dependent on such factors as gonad ripening and food availability. 3. In particular, the obtained data indicate that a reduction of the antioxidant defence systems, occurring during winter, could be directly responsible for an enhanced susceptibility of mussels tissues to oxidative stress, as indicated by the high MDA concentration observed in this period.  相似文献   

19.
Contaminant-related changes in antioxidative processes in the freshwater crustacea Daphnia magna exposed to model redox cycling contaminant were assessed. Activities of key antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferases and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) and lipofucsin pigment content were determined in D. magna juveniles after being exposed to sublethal levels of menadione, paraquat, endosulfan, cadmium and copper for 48 h. Results denoted different patterns of antioxidant enzyme responses, suggesting that different toxicants may induce different antioxidant/prooxidant responses depending on their ability to produce reactive oxygen species and antioxidant enzymes to detoxify them. Low responses of antioxidant enzyme activities for menadione and endosulfan, associated with increasing levels of lipid peroxidation and enhanced levels of antioxidant enzyme activities for paraquat, seemed to prevent lipid peroxidation, whereas high levels of both antioxidant enzyme activities and lipid peroxidation were found for copper. For cadmium, low antioxidant enzyme responses coupled with negligible increases in lipid peroxidation indicated low potential for cadmium to alter the antioxidant/prooxidant status in Daphnia. Among the studied enzymes, total glutathione peroxidase, catalase and glutathione S-transferase appeared to be the most responsive biomarkers of oxidative stress.  相似文献   

20.
Changes in the content of lipid peroxidation (LP) products and activities of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in myocardium of rats after experimental infarction as well as after pretreatment with antioxidant ionol, beta-adrenoblocker inderal and verapamil, an inhibitor of slow Ca2+-channels have been studied. In the left ventricles of the control animals decreased levels of LP-products (Schiff bases and lipid hydroperoxides) have been registered as compared with right ventricles, accompanied by increased activity of antioxidant enzymes in the left ventricles. In experimental infarction the level of LP products increases and activity of antioxidant enzymes decreases both in ischemic and nonischemic regions of the heart. In nonischemic zone these changes can be prevented by pretreatment with inderal and ionol but not with verapamil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号