首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):389-395
Cell suspension cultures of Catharanthus roseus G. Don, Glycine max (L.) Merr. and Nicotiana tabacum L. were incubated with [14C]acetate, [14C]oleic acid and [14C]linoleic acid at five different temperatures ranging from 15 to 35° C. When the incubation temperature was increased, [14C]acetate was incorporated preferentially into [14C]palmitate, with a concomitant drop in [14C]oleate formation. Between 15 and 20° C, [14C]oleic acid accumulated in C. roseus cells. In all cultures, optimum desaturation of [14C]oleic acid to [14C]linoleic acid occurred between 20 and 25° C, and in G. max this was also the optimal range for desaturation of [14C]linoleic acid to [14C]linolenic acid. Elongation of [14C]palmitic acid was inhibited when cultures grown at 15° C for 25 h were subsequently incubated with [14C]acetate at 25° C. [14C]oleic acid accumulated in G. max and C. roseus cultures grown at 35° C for 25 h and subsequently incubated at 25° C. Desaturation of [14C]oleic acid increased up to 25° C, but then decreased or leveled off depending on the cell line and on the temperature prior to incubation.  相似文献   

2.
When grown in the light and in a Tris-acetate phosphate medium, cells of Chlamydomonas reinhardtii Dang. can use the following l-amino acids as a sole nitrogen source: asparagine, glutamine, arginine, lysine, alanine, valine, leucine, isoleucine, serine, methionine, histidine, and phenylalanine, whereas, in the absence of acetate, the cells only used l-arginine. The utilization system in the acetate medium consisted of an extracellular deaminating activity induced by l-amino acids; it took between 10 to 30 h before the system appeared in cells previously grown with ammonium. This deaminase activity was nonspecific, required an organic carbon source for its de-novo synthesis, and was sensitive to high ammonium concentration and light deprivation.Abbreviations HPLC high-performance liquid chromatography - TAP Tris-acetate-phosphate This work was supported by a grant of the CAICYT, Spain. The secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.To whom correspondence should be addressed.  相似文献   

3.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):384-388
The fatty-acid composition of C. roseus and N. tabacum cell suspension cultures was unaffected by subculture on Wood and Braun, Murashige and Skoog, or Gamborg B5C media. However, placing the cultures — which were normally grown at 25° C — at 15° C reduced growth but resulted in enhanced formation of oleic and linolenic acids in C. roseus cultures and increased levels of linoleic and linolenic acids in cultures of G. max and N. tabacum, respectively. The incorporation of [14C]acetate into [14C]linoleic acid was more rapid in N. tabacum cells than in G. max cells, but was very poor in C. roseus where the [14C] label was distributed mainly between palmitic and oleic acids.  相似文献   

4.
The nature of transepithelial and cellular transport of the dibasic amino acid lysine in human intestinal epithelial Caco-2 cells has been characterized. Intracellular accumulation of lysine across both the apical and basolateral membranes consists of a Na+-independent, membrane potential-sensitive uptake. Na+-independent lysine uptake at the basolateral membrane exceeds that at the apical membrane. Lysine uptake consists of both saturable and nonsaturable components. Na+-independent lysine uptake at both membranes is inhibited by lysine, arginine, alanine, histidine, methionine, leucine, cystine, cysteine and homoserine. In contrast, proline and taurine are without inhibitory effects at both membranes. Fractional Na+-independent lysine efflux from preloaded epithelial layers is greater at the basolateral membrane and shows trans-stimulation across both epithelial borders by lysine, arginine, alanine, histidine, methionine, and leucine but not proline and taurine. Na+-independent lysine influx (10 μm) in the presence of 10 mm homoserine shows further concentration dependent inhibition by lysine. Taken together, these data are consistent with lysine transport being mediated by systems bo,+, y+ and a component of very low affinity (nonsaturable) at both membranes. The relative contribution to lysine uptake at each membrane surface (at 10 μm lysine), normalized to total apical uptake (100%), is apical bo,+ (47%), y+ (27%) and the nonsaturable component (26%), and basal bo,+ (446%), y+ (276%) and the nonsaturable component (20%). Northern analysis shows hybridization of Caco-2 poly(A)+RNA with a human rBAT cDNA probe. Received: 3 July 1995/Revised: 6 February 1996  相似文献   

5.
E. Johannes  H. Felle 《Planta》1985,166(2):244-251
The transport of several amino acids with different side-chain characteristics has been investigated in the aquatic liverwort Riccia fluitans. i) The saturation of system I (neutral amino acids) by addition of excess -aminoisobutyric acid to the external medium completely eliminated the electrical effects which are usually set off by neutral amino acids. Under these conditions arginine and lysine significantly depolarized the plasmalemma. ii) L- and D-lysine/arginine were discriminated against in favour of the L-isomers. iii) Increasing the external proton concentration in the interval pH 9 to 4.5 stimulated plasmalemma depolarization, electrical net current, and uptake of [14C]-basic amino acids. iv) Uptake of [14C]-glutamic acid took place only at acidic pHs. v) [14C]-histidine uptake had an optimum between pH 6 and 5.5. vi) Overlapping of the transport of basic, neutral, and acidic amino acids was common. It is suggested that besides system I, a second system (II), specific for basic amino acids, exists in the plasmalemma of Riccia fluitans. It is concluded that the amino-acid molecule with an uncharged side chain is the substrate for system I, which also binds and transports the neutral species of acidic amino acids, whereas system II is specific for amino acids with a positively charged side chain. The possibility of system II being a proton cotransport is discussed.Abbreviation AiB -aminoisobutyric acid  相似文献   

6.
The insulin-independent and combined effects of fatty acids (FA; linoleic and oleic acids) and insulin in modulating lipid accumulation and adipogenesis in 3T3-L1 cells was investigated using a novel protocol avoiding the effects of a complex hormone 'induction' mixture. 3T3-L1 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) plus serum (control) or in DMEM plus either 0.3 mmol/l linoleic or oleic acids with 0.3 mmol/l FA-free bovine serum albumin in the presence or absence of insulin. Cells were cultured for 4 to 8 days and cell number, lipid accumulation, peroxisome proliferator-activated receptor-gamma (PPAR-γ) and glucose transporter 4 (GLUT-4) protein expression were determined. Cell number appeared to be decreased in comparison with control cultures. In both oleic acid and linoleic acid-treated cells, notably in the absence (and presence) of insulin, oil-red O stain-positive cells showed abundant lipid. The percentage of cells showing lipid accumulation was greater in FA-treated cultures compared with control cells grown in DMEM plus serum (P < 0.001). Treatment with both linoleic and oleic acid-containing media evoked higher levels of PPAR-γ than observed in control cultures (P < 0.05). GLUT-4 protein also increased in response to treatment with both linoleic and oleic acid-containing media (P < 0.001). Lipid accumulation in 3T3-L1 cells occurs in response to either oleic or linoleic acids independently of the presence of insulin. Both PPAR-γ and GLUT-4 protein expression were stimulated. Both proteins are considered markers of adipogenesis, and these observations suggest that these cells had entered the physiological state broadly accepted as differentiated. Furthermore, 3T3-L1 cells can be induced to accumulate lipid in a serum-free medium supplemented with FA, without the use of induction protocols using complex hormone mixtures. We have demonstrated a novel model for the study of lipid accumulation that will improve the understanding of adipogenesis in adipocyte lineage cells.  相似文献   

7.
Summary The direct conversion of d-xylose to ethanol was investigated using immobilized growing and non-growing cells of the yeast Pachysolen tannophilus. Both preparations produced ethanol from d-xylose, however the d-xylose conversion to ethanol was much better with immobilized growing cells. Ethanol concentration up to 22.9 g/l and ethanol yield of 0.351 g/g of d-xylose were obtained in batch fermentation by immobilized growing cells whereas only 17.0 g/l and 0.308 g/g of d-xylose were obtained by immobilized non-growing cells. With continuous systems, immobilized growing cells were necessary for the long-term operation, since a steady state ethanol concentration of 17.7 g/l was maintained for only one week by immobilized non-growing cell reactor. With simultaneous control of aeration rate and concentrations of nitrogen sources in feed medium, immobilized growing cells of P. tannophilus showed excellent performance. At a residence time of 25 h, the immobilized cell reactor produced 26.9 g/l of ethanol from 65 g/l of d-xylose in feed medium.  相似文献   

8.
Summary A study was made of the effect of temperature on accumulation of glucosamine and 2-aminoisobutyrate by Candida utilis NCYC 321 grown at 30° C or 10° C. Exponential-phase cells contained greater proportions of C16:1 and C18:3 acids, and smaller proportions of C13:1 and C18:2 acids, when grown in a defined medium at 10° C compared with 30° C. Cells grown at 30° C or 10° C were able to accumulate extracellular (10 mM) glucosamine and 2-aminoisobutyrate against concentration gradients. 2-Aminoisobutyrate was not metabolised by the cells; glucosamine was accumulated probably as a mixture of glucosamine 1- and 6-phosphates. Rates of accumulation of glucosamine and 2-aminoisobutyrate by cells grown at 30° C or 10° C decreased markedly when the test temperature was decreased from 30° C to 15° C. The rate of accumulation of glucosamine by cells grown at 10° C was considerably lower at each of the test temperatures compared with the corresponding rates for cells grown at 30° C; the rate of accumulation of 2-aminoisobutyrate was much less affected by the temperature at which the cells were grown and then only when measured at temperatures below about 20° C. Apparent K m values for accumulation of glucosamine by cells grown at 30° C or 10° C decreased considerably when the test temperature was lowered from 20° C to 15° C. The extent of the decrease in K m value was approximately the same for cells grown at 30° C or 10° C. Apparent K m values for accumulation of 2-aminoisobutyrate were hardly affected by test temperature. Apparent V max values for accumulation of glucosamine or 2-aminoisobutyrate were much lower when measured at 15° C than at 30° C. When measured at 30° C, apparent V max values for accumulation of either solute were slightly lower with cells grown at 10° C compared with cells grown at 30° C; when measured at 15° C, the values were slightly greater with cells grown at 10° C. Net accumulation of glucosamine, at 30° C or 20° C, by cells grown at 30° C or 10° C ceased after 4–6 h. Cells grown at either temperature continued to accumulate 2-aminoisobutyrate at 30° C or 20° C for at least 12 h. The rate of efflux of glucosamine by cells grown at 30° C was slower when measured at 20° C compared with 30° C. With cells grown at 10° C, the rate of efflux at 30° C was slower than with cells grown at 30° C; when measured at 20° C, the rates were about equal. The temperature at which the cells were grown did not affect the ability of d-glucose, d-mannose or d-ribose to compete with d-glucosamine, or with the ability of l-alanine to compete with 2-aminoisobutyrate, when tested at 30° C or 20° C. Cells grown 30° C or 10° C had very similar ATP contents. The results are discussed in relation to the effect of temperature on the rate of solute accumulation by micro-organisms.Abbreviation AIB 2-Aminoisobutyrate  相似文献   

9.
Supercritical carbon dioxide extraction was investigated as a method for removing lipids and bad flavor from tuna viscera. To find the optimum conditions, different experimental variables, such as pressure, temperature, flow rate of solvent and sample size, were evaluated for the effective removal of lipids and the undesirable smell. Ethanol was used as the entrainer, with a 3% by vol CO2 flow rate. By increasing the pressure at constant temperature, the efficiency of the lipid removal was improved and the protein was concentrated without denaturalization. The main fatty acids extracted from the tuna viscera were palmitic acid (16∶0), heptadecanoic acid (17∶1), oleic acid (18∶1) and docosahexaenoic acid (22∶6). The major amino acids in the tuna viscera treated by supercritical carbon dioxide were glutamic acid, leucine and lysine, and the free amino acids werel-proline, taurine andl-α-aminoadipic acid.  相似文献   

10.
Summary The fermentation ofd-xylose byPachysolen tannophilus, Candida shehatae, andPichia stipitis has been investigated by13C-nuclear magnetic resonance spectroscopy of both whole cells and extracts. The spectra of whole cells metabolizingd-xylose with natural isotopic abundance had significant resonance signals corresponding only to xylitol, ethanol and xylose. The spectra of whole cells in the presence of [1-13C]xylose or [2-13C]xylose had resonance signals corresponding to the C-1 or C-2, respectively, of xylose, the C-1 or C-2, respectively, of xylitol, and the C-2 or C-1, respectively, of ethanol. Xylitol was metabolized only in the presence of an electron acceptor (acetone) and the only identifiable product was ethanol. The fact that the amount of ethanol was insufficient to account for the xylitol metabolized indicates that an additional fate of xylitol carbon must exist, probably carbon dioxide. The rapid metabolism of xylulose to ethanol, xylitol and arabinitol indicates that xylulose is a true intermediate and that xylitol dehydrogenase catalyzes the reduction (or oxidation) with different stereochemical specificity from that which interconverts xylitol andd-xylulose. The amino acidl-alanine was identified by the resonance position of the C-3 carbon and by enzymatic analysis of incubation mixtures containing yeast and [1-13C]xylose or [1-13C]glucose. The position of the label from both substrates and the identification of isotope also in C-1 of alamine indicates flux through the transketolase/transaldolase pathway in the metabolism. The identification of a resonance signal corresponding to the C-1 of ethanol in spectra of yeast in the presence of [1-13C]xylose and fluoroacetate (but not arsenite) indicates the existence of equilibration of some precursor of ethanol (e.g. pyruvate) with a symmetric intermediate (e.g. fumarate or succinate) under these conditions.  相似文献   

11.
Ethanol inhibition of glucose catabolism in Zymomonas mobilis was investigated using 31P NMR spectroscopy in vivo and of perchloric acid extracts from cell suspensions incubated with 0, 5 and 10% (w/v) ethanol. In vivo 31P NMR experiments revealed slower glucose utilization and decreased levels of nucleoside triphosphates in the presence of 10% ethanol as compared to controls. Using 31P NMR spectroscopy of perchloric acid extracts, intracellular accumulation of 3.4 mM 3-phosphoglycerate was found when 10% ethanol was present in the medium. No accumulation of this metabolite occurred in cells incubated with 0 and 5% ethanol. Enzyme assays confirmed that phosphoglycerate-mutase and enolase were inhibited 31 and 40%, respectively, in the presence of 10% ethanol in the test system. Therefore, under the conditions used the decrease in the fermentative activity of Z. mobilis at high ethanol concentrations is due to inhibition of phosphoglycerate-mutase and enolase.Abbreviation KDPG 2-keto-3-deoxy-6-phosphogluconate  相似文献   

12.
Summary High-frequency embryogenesis systems were established for hybrid yellow-poplar (Liriodendron tulipifera×L. chinense) and hybrid sweetgum (Liquidambar styraciflua×L. formosana) by modifying a medium originally developed for embryogenic yellow-poplar cultures. Embryogenic cultures of both hybrids, consisting of proembryogenic masses (PEMs), were initiated from immature hybrid seeds on an induction-maintenance medium (IMM) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and casein hydrolyzate (CH). For hybrid yellow-poplar, as many as 2100 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM lacking CH, at a pH that varied with genotype (3.5 or 5.6), followed by size fractionation and plating on semisolid embryo development medium (DM; IMM lacking 2,4-D and BA) without CH, but supplemented with 4.0 mgl−1 (15 μM) abscisic acid. For hybrid sweetgum, up to 1650 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM without CH, but with 550 mgl−1 l-glutamine, 510 mg l−1 asparagine, and 170 mg l−1 arginine at pH 5.6. Somatic embryos developed from cell clumps on DM without any plant growth regulators or other supplements. Hundreds of somatic embryos of both hybrids were germinated on DM without CH, transferred to potting mix, and hardened off in a humidifying chamber for transfer to the greenhouse.  相似文献   

13.
In rat luteal cells labeled with (3H]oleic acid, PGF-stimulated phospholipase D (PLD) activation was investigated. The PLD activity was detected by measuring the accumulation of [3H]phosphatidylethanol (PtdEt) in the presence of ethanol. PGF stimulated PtdEt accumulation at concentrations of more than 100 nM in the presence of ethanol. However, PtdEt accumulation did not change in the absence of ethanol. PGF (1 μM) increased PtdEt accumulation after 1 min, and the accumulation reached a plateau by 2–3 min. These results indicate that PGF activates PLD in rat luteal cells. U-73122, a phospholipase C (PLC) inhibitor, and staurosporine, a protein kinase C (PKC) inhibitor, did not inhibit PGF-stimulated [3H]PtdEt accumulation. These results suggest that PGF-induced PLD activation is different from PLC-PKC systems. We reported previously that PGF stimulated the release of arachidonic acid. The effects of indomethacin, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), inhibitors of arachidonic acid metabolism, on PGF-stimulated PtdEt accumulation were examined. Pretreatment with indomethacin enhanced PGF-induced PtdEt accumulation. In contrast, pretreatment with NDGA and ETYA inhibited PGF-induced PtdEt accumulation. It is suggested that PGF-stimulated PLD activation is mediated via lipoxygenase products.  相似文献   

14.
[1-14C]Oleic and [1-14C]linoleic acids were rapidly desaturated when incubated with maize leaves from 8-day-old plants and the labeled fatty acids, and their desaturation products, were rapidly incorporated into glycerolipids. Oleic acid was desaturated to linoleate at the rate of 0.7 nmol/100 mg tissue/h and further desaturated to linolenate at about one-third this rate. The rates of linolenate formation were similar when either oleic acid or linoleic acid was the substrate although there was a 2-h lag period when oleic acid was substrate. When radioactive oleic, linoleic, and linolenic acids were substrates, phosphatidylcholine was the most extensively labeled glycerolipid followed by monogalactosyldiacylglycerol. The relative rates of incorporation of label into individual glycerolipids are consistent with a movement of labeled fatty acids from phosphatidylcholine to monogalactosyldiacylglycerol and then to diagalactosyldiacylglycerol. The rates of labeling of phosphatidylcholine oleate and of phosphatidylcholine linoleate are consistent with a precursor-product relationship in that there was a delayed accumulation of phosphatidylcholine linoleate relative to that of phosphatidylcholine oleate and phosphatidylcholine linoleate continued to accumulate while phosphatidylcholine oleate declined. Linoleate formed from oleate was widely distributed in glycerolipids but neither phosphatidylcholine linolenate nor linolenate-containing diacylglycerol was detected at short and intermediate incubation times when either oleic or linoleic acid was substrate. The kinetics of incorporation of linoleate and linolenate into monogalactosyldiacylglycerol suggest a transfer of linoleate from phosphatidylcholine. The initial rate of accumulation of labeled linolenate in monogalactosyldiacylglycerol was very similar to the rate of desaturation of linoleate and it is suggested that desaturation of linoleate occurs while associated with monogalactosyl-diacylglycerol.  相似文献   

15.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   

16.
During L-lactic acid fermentation by Rhizopus oryzae, increasing the phosphate level in the fermentation medium from 0.1 g l–1 to 0.6 g l–1 KH2PO4 reduced the maximal concentration of L-lactic acid and fumaric acid from 85 g l–1 to 71 g l–1 and from 1.36 g l–1 to 0.18 g l–1, respectively; and it decreased the fermentation time from 72 h to 52 h. Phosphate at 0.40 g l–1 KH2PO4 was suitable for both minimizing fumaric acid accumulation and benefiting L-lactic acid production.  相似文献   

17.
Synechococcus PCC 6301 synthesized sucrose as a compatible solute following hyperosmotic shock induced by NaCl. Initial rates of photosynthetic 14C incorporation were reduced following salt shock. Photosynthetic rates were comparable in cells enriched for glycogen (by growth in NO 3 - -deficient medium) and cells grown in NO 3 - -sufficient medium in the absence of osmotic shock. Incorporation of 14C was predominantly into the NaOH fraction and the residual acidic fraction in cells grown in NO 3 - -sufficient medium, whereas incorporation was predominantly into the residual acidic fraction in cells grown in NO 3 - -deficient medium. Following salt stress, 14C incorporation was initially into the ethanol-soluble fraction and the majority of tracer was recovered in sucrose. Carbon-14 was detected in sucrose in cells which had been enriched for [14C]glycogen prior to salt stress, inferring that glycogen can act as a carbon source for sucrose synthesis following salt stress. Changes in the specific activity of sucrose are consistent with an initial synthesis of sucrose from glycogen followed by synthesis of sucrose using newly fixed carbon, in response to salt stress.This work was supported by the Agricultural and Food Research Council.  相似文献   

18.
N5-(l-1-Carboxyethyl)-l-ornithine: NADP+ oxidoreductase [N5-(CE)ornithine synthase] catalyzes the NADPH-dependent reductive condensation between pyruvic acid and the terminal amino group ofl-ornithine andl-lysine to yield N5-(l-1-carboxyethyl)-l-ornithine and N6-(l-1-carboxyethyl)-l-lysine respectively. Polyclonal antibodies against N5-(CE)ornithine synthase purified fromStreptococcus lactis K1 have been used for the immunochemical (Western blot) detection and sizing of this enzyme in various lactic acid bacteria. The enzyme was confined to about one-half of the strains ofS. lactis examined. N5-(CE)ornithine synthase is constitutive, and in strains K1, 6F3, and (plasmid-free)H1-4125 the native enzyme is a tetramer composed of identical subunits of Mr=38,000. However, in other strains, including 133 (ATCC 11454), C10, and ML8, the molecular weight of the native enzyme is approximately 130,000 and the corresponding subunit Mr=35,000. Analyses of the amino acid pool components maintained byS. lactis K1 during growth in medium containing [14C] labeled and unlabeled arginine have revealed that (i) exogenous arginine is the precursor of intracellular ornithine, citrulline, and N5-(CE)ornithine, and (ii) the rates of turnover of ornithine and citrulline were considerably faster than that of N5-(CE)ornithine. These data account for the biosynthesis and accumulation of N5-(CE)ornithine byS. lactis.  相似文献   

19.
Determining the kinetic constants of arginine uptake by endothelial cells mediated by more than one transporter from linearization of data as Eadie-Hofstee plots or modeling which does not include the concentration of trace radiolabeled amino acid used to measure uptake may not be correct. The initial rate of uptake of trace [3H]l-arginine by HUVECs and ECV304 cells in the presence of a range of unlabeled arginine and modifiers was used in nonlinear models to calculate the constants of arginine uptake using GraphPad Prism. Theoretical plots of uptake derived from constants determined from Eadie-Hofstee graphs overestimated uptake, whereas those from the nonlinear modeling approach agreed with experimental data. The contribution of uptake by individual transporters could be modeled and showed that leucine inhibited the individual transporters differently and not necessarily competitively. N-Ethylmaleimide inhibited only y+ transport, and BCH may be a selective inhibitor of y+L transport. The absence of sodium reduced arginine uptake by y+L transport and reduced the K m′, whereas reducing sodium decreased arginine uptake by y+ transport without affecting the K m′. The nonlinear modeling approach using raw data avoided the errors inherent in methods deriving constants from the linearization of the uptake processes following Michaelian kinetics. This study provides explanations for discrepancies in the literature and suggests that a nonlinear modeling approach better characterizes the kinetics of amino acid uptake into cells by more than one transporter.  相似文献   

20.
This study concerns the effects of four different classes of plant growth regulators on root morphology, patterns of growth and condensed tannin accumulation in transgenic root cultures of Lotus corniculatus L. (Bird's-foot trefoil). Growth of transformed roots in 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in decreased tannin levels relative to controls at concentrations of 10-6 M and above, while gibberellic acid (GA3) inhibited tannin accumulation at concentrations of 10-7 M and above. Benzyladenine (BA) had little effect at low concentrations (10-7 M and below) but resulted in an increase in tannin levels at 10-6 M. Abscisic acid had little effect on levels of condensed tannins at any of the concentrations used. Experiments involving growth regulator addition and medium transfer demonstrated that 2,4-D inhibition of tannin accumulation could be reversed by GA3 and BA, while GA3 downregulation could only be reversed by the addition of 2,4-D. Although 2,4-D inhibited tannin accumulation, addition of 2,4-D to root cultures grown for 14 or 28 days in the absence of plant growth regulators stimulated both growth and tannin biosynthesis. Characteristic alterations in root morphologies accompanied growth regulator-mediated modulation of tannin biosynthesis. Growth in 2,4-D resulted in partially de-differentiated root cultures while growth in GA3 produced roots with an elongated phenotype. Restoration of tannin biosynthesis in 2,4-D-treated roots was accompanied by root re-differentiation and the production of new lateral roots.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid 3 - FW fresh weight  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号