首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Mammalian neural stem cells generate transit amplifying progenitors that expand the neuronal population, but these type of progenitors have not been studied in Drosophila. The Drosophila larval brain contains approximately 100 neural stem cells (neuroblasts) per brain lobe, which are thought to bud off smaller ganglion mother cells (GMCs) that each produce two post-mitotic neurons. Here, we use molecular markers and clonal analysis to identify a novel neuroblast cell lineage containing "transit amplifying GMCs" (TA-GMCs). TA-GMCs differ from canonical GMCs in several ways: each TA-GMC has nuclear Deadpan, cytoplasmic Prospero, forms Prospero crescents at mitosis, and generates up to 10 neurons; canonical GMCs lack Deadpan, have nuclear Prospero, lack Prospero crescents at mitosis, and generate two neurons. We conclude that there are at least two types of neuroblast lineages: a Type I lineage where GMCs generate two neurons, and a type II lineage where TA-GMCs have longer lineages. Type II lineages allow more neurons to be produced faster than Type I lineages, which may be advantageous in a rapidly developing organism like Drosophila.  相似文献   

2.
Stem cells and progenitor cells derived from the developing human brain have been shown to differentiate into neurons and astrocytes. However, few studies have examined the functional, physiological properties of these differentiated neurons and astrocytes. In this study we have used immunocytochemistry in combination with electrophysiology to examine protein machinery and functional properties of neurons and astrocytes differentiated from human brain progenitor cells (hBPCs).Our results show that serum induces mainly astrocytic phenotype cells that express GFAP and have physiological properties that are typical of astrocytes. hBPCs differentiated with BDNF and PDGF develop mainly into neurons expressing mature neuronal proteins MAP-2, synaptobrevin II and vesicular glutamate transporter I in the process, plus a small population of GFAP-positive radial cells. Based on electrophysiology of BDNF/PDGF-treated cells two classes of cell were identified. Class I cells have functional neuronal properties, including functional voltage-gated Na(+) and K(+) currents, functional AMPA receptors and the ability to generate action potentials. A smaller subpopulation of cells (Class II cells) expresses GFAP and exhibit functional properties of astrocytes, including linear current-voltage relationship and dye-coupling.  相似文献   

3.
We have identified the enteric neuron types expressing immunoreactivity for the calcium-binding protein calbindin D28k (CALB) in cryostat sections and whole-mount preparations of myenteric (MP) and submucosal (SMP) plexuses of sheep ileum. We wished to determine whether CALB-IR in the sheep enteric nervous system was expressed in Dogiel type II cells, as in guinea-pig and rat ileum, and could therefore be used as a marker for intrinsic primary afferent neurons. The neurochemical coding of CALB-containing myenteric and submucosal neurons in ileum of unweaned lamb and mature sheep and its co-localisation with various neural markers was studied immunohistochemically. An antiserum against neuronal nuclear protein (NeuN) failed to detect the entire neuronal population; it was expressed only in 48% of neuron-specific enolase (NSE)-immunoreactive (NSE-IR) neurons. Human neuronal protein appeared to occur in the large majority or all neurons. Almost all CALB-IR neurons were: (1) radially multidendritic; (2) eccentric multidendritic; (3) Dogiel type II. CALB-IR occurred in 20–25% of myenteric and 65–75% of submucosal neurons in lamb and mature sheep, with higher values in mature sheep. Nearly all CALB-IR neurons were common choline acetyltransferase (cChAT)-IR, whereas only about 20% of cChAT-IR somata were CALB-IR. In lamb and mature sheep, 90% of MP CALB-IR neurons were peripheral choline acetyltransferase (pChAT)-IR. In lamb SMP, 80±13% of CALB-IR cells were also pChAT-IR, whereas all those in mature SMP were pChAT-IR. Fewer myenteric CALB-IR neurons exhibited tachykinin (TK) in mature sheep (49%) than in lamb (88%). This was also the case for submucosal ganglia (mature sheep, 63%; lamb, 89%). In lamb MP, 77±7% of CALB-IR cells were NeuN-positive. In mature sheep, 73±10% of CALB-IR somata were NeuN-IR, but NeuN failed to stain SMP neurons. In the MP of suckling and mature sheep, Dogiel type II CALB-IR neurons were calcitonin gene-related peptide (CGRP)-IR. In the SMP at both stages, Dogiel type II CALB-IR somata (about 50% of CALB-IR neurons) were also CGRP-IR. Only small proportions of CALB-IR neurons showed immunoreactivity for calretinin or nitric oxide synthase (NOS), although large populations of CALB and NOS neurons occurred in the ganglia. Thus, CALB is a marker of most Dogiel type II neurons in the sheep but is not confined to Dogiel II neurons. CGRP is a more selective marker of Dogiel type II neurons, being only found in this neuron type.This work was supported by a grant from the Ministero dellIstruzione, dellUniversità e della Ricerca (MIUR)  相似文献   

4.
Spatiotemporal pattern formation in neuronal networks depends on the interplay between cellular and network synchronization properties. The neuronal phase response curve (PRC) is an experimentally obtainable measure that characterizes the cellular response to small perturbations, and can serve as an indicator of cellular propensity for synchronization. Two broad classes of PRCs have been identified for neurons: Type I, in which small excitatory perturbations induce only advances in firing, and Type II, in which small excitatory perturbations can induce both advances and delays in firing. Interestingly, neuronal PRCs are usually attenuated with increased spiking frequency, and Type II PRCs typically exhibit a greater attenuation of the phase delay region than of the phase advance region. We found that this phenomenon arises from an interplay between the time constants of active ionic currents and the interspike interval. As a result, excitatory networks consisting of neurons with Type I PRCs responded very differently to frequency modulation compared to excitatory networks composed of neurons with Type II PRCs. Specifically, increased frequency induced a sharp decrease in synchrony of networks of Type II neurons, while frequency increases only minimally affected synchrony in networks of Type I neurons. These results are demonstrated in networks in which both types of neurons were modeled generically with the Morris-Lecar model, as well as in networks consisting of Hodgkin-Huxley-based model cortical pyramidal cells in which simulated effects of acetylcholine changed PRC type. These results are robust to different network structures, synaptic strengths and modes of driving neuronal activity, and they indicate that Type I and Type II excitatory networks may display two distinct modes of processing information.  相似文献   

5.
Using Golgi techniques we have studied neuronal cell types in the anterior dorsal ventricular ridge (ADVR) of the adult lizard Gallotia galloti. Multipolar, bitufted, and juxtaependymal neuronal forms were found. The multipolar and bitufted neurons are present in both the periventricular and central ADVR zones. Multipolar neurons can be subdivided into multipolar neurons with polygonal somata and four to six main dendritic trunks and multipolar neurons with pyramidal somata and three or more dendritic trunks. The former are the cells most frequently impregnated in the ADVR. In the population of bitufted neurons, we distinguish subtypes I, II, and III according to the number of dendritic trunks that emerge from the somata. Juxtaependymal neurons are restricted to a cell-poor zone, adjacent to ependymal cells. Their dendrites either are orientated parallel to the ventricular surface or extend into the periventricular zone. The dendrites of ADVR neurons have pedunculated spines with knob-like tips. However, such spines do not appear on the somata or on the primary dendritic trunks. The number of spines is scarce or moderate. The periventricular neuronal clusters contain two to five cells. The morphology of these neurons is mainly multipolar, but we also found some bitufted neurons.  相似文献   

6.
Enzymes were investigated for their occurrence in the cell wall fraction (4,000 g sediment of the homogenate) of Agaricus bisporus sporocarps. Besides the markers malate dehydrogenase (MalDH), hexokinase (HK) and ATPase, the range of entities studied included gamma-glutamyl transferase (gamma-GT), mannitol dehydrogenase (MDH), phenoloxidase, chitin and beta-1,3-glucan synthases (ChS, beta-GS), chitinase, beta-N-acetylhexosaminidase (HexNAc'ase) and beta-glucanase. Using the extractability in dilute buffer, digitonin and NaCl at high ionic strength as the operational criteria, four categories (I-IV) of enzyme-wall associations could be discerned: category I encompasses enzymes which are artefactually present (i.e. contaminants); category II, enzymes that are hydrophobically bound (which may or may not be genuinely wall-associated), III includes enzymes that are ionically bound and IV, enzymes whose bonding to the wall is in all probability covalent. The same enzyme entity may have representatives in more than one category, e.g. ChS and beta-GS (I, II, IV), phenolase (I, II, III, IV), beta-glucanase, chitinase and HexNAc'ase (I, IV). It is thought that the categorization presented could be of general applicability in fungi as well as in higher plants to specify enzyme-wall associations in a straightforward, comparable manner, thus avoiding some of the ambiguous terms prevailing in the literature, such as "weakly", "strongly" or "tightly" wall bound. The results are discussed in more detail for several of the more economically important enzymes studied.  相似文献   

7.
8.
Small field (less than 10 degrees) monocular neurons were electrophysiologically recorded from the rostral part of the frog's optic tectum. When tested with conventional stimuli, these neurons displayed rather common properties. Two main groups could nevertheless be defined. In group I neurons (30%), habituation to repetitive stimulations was present but the responses never disappeared completely. These neurons also showed brief OFF-ON responses to light spot stimulations. Group II neurons (70%) only responded to the first presentations of moving targets. Responses to light spot stimulation were different: 25% of them (group IIa) showed OFF-ON responses, 19% (group IIb) presented only OFF responses and 26% (group IIc) gave no response. The receptive fields had no null region and extended about equally in all directions. There was no correlation between RF diameters and response types. Small field visual neurons represented approximately 37.7% of the whole neuronal population. The problem of their place in the usually used classification is discussed.  相似文献   

9.
A method was devised that employs deviations from the Poisson distribution to analyze the spatial arrangement of neurons and glia in human cerebral cortex. A field of randomly distributed points equal in number of a sample field of neuronal or glial cells is generated by computer, and the proportion of cells in the sample field that are closer to the nearest neighboring cells than to the nearest randomly distributed point is determined. We call this proportion the "Poisson ratio." When the cells are randomly distributed, the Poisson ratio is equal to 0.5. If the Poisson ratio is less than 0.5, the cells are farther away from one another than a random distribution would predict (exclusionary pattern); if the Poisson ratio is greater than 0.5, the cells are closer to one another than a random distribution would predict (clustering). A simple nonparametric statistical test is used to determine the significance of differences in the ratios. This method was applied to samples of human cerebral cortex in order to test the hypothesis that patients with schizophrenic psychosis may have an altered pattern of neuronal clustering. The analysis revealed that there is no difference in the nearest-neighbor distribution of either neurons or glia between psychotic patients and controls. It was found, however, that there is a highly significant difference in the spatial distribution of neurons versus glia in human cerebral cortex. Neurons of layers II to VI in the human cortex show greater-than-expected distances among them and are distributed according to an exclusionary pattern, while neurons in layer I show a clustering pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
N Ulfig  H Braak 《Acta anatomica》1989,134(3):237-241
Three neuronal types constituting the magnocellular nuclei of the human basal forebrain have been differentiated with the aid of preparations stained for both Nissl material and pigment deposits: type I = large multipolar neurons contain loosely packed and faintly stained lipofuscin granules occupying a large portion of the cell body; type II = large spindle-shaped neurons reveal a densely packed accumulation of coarse and intensely stained lipofuscin granules, and type III = small nerve cells, scattered among these large neuronal components, with only a small number of faintly stained lipofuscin granules. The determination of the projection areas of the somata of the three neuronal types has led to a distribution pattern with three peaks. The ratio of the nerve cell types has been evaluated: 73.6% type I; 8.6% type II, and 17.8% type III neurons.  相似文献   

11.

Background

Recent evidence suggests that oxytocin (OT), secreted in the superficial spinal cord dorsal horn by descending axons of paraventricular hypothalamic nucleus (PVN) neurons, produces antinociception and analgesia. The spinal mechanism of OT is, however, still unclear and requires further investigation. We have used patch clamp recording of lamina II neurons in spinal cord slices and immunocytochemistry in order to identify PVN-activated neurons in the superficial layers of the spinal cord and attempted to determine how this neuronal population may lead to OT-mediated antinociception.

Results

We show that OT released during PVN stimulation specifically activates a subpopulation of lamina II glutamatergic interneurons which are localized in the most superficial layers of the dorsal horn of the spinal cord (lamina I-II). This OT-specific stimulation of glutamatergic neurons allows the recruitment of all GABAergic interneurons in lamina II which produces a generalized elevation of local inhibition, a phenomenon which might explain the reduction of incoming Aδ and C primary afferent-mediated sensory messages.

Conclusion

Our results obtained in lamina II of the spinal cord provide the first clear evidence of a specific local neuronal network that is activated by OT release to induce antinociception. This OT-specific pathway might represent a novel and interesting therapeutic target for the management of neuropathic and inflammatory pain.  相似文献   

12.
13.
Botulinum neurotoxins (BoNTs) target presynaptic nerve terminals by recognizing specific neuronal surface receptors. Two homologous synaptic vesicle membrane proteins, synaptotagmins (Syts) I and II, bind toxins BoNT/B and G. However, a direct demonstration that Syts I/II mediate toxin binding and entry into neurons is lacking. We report that BoNT/B and G fail to bind and enter hippocampal neurons cultured from Syt I knockout mice. Wild-type Syts I and II (but not Syt I loss-of-function toxin-binding domain mutants) restored binding and entry of BoNT/B and G in Syt I–null neurons, thus demonstrating that Syts I/II are protein receptors for BoNT/B and G. Furthermore, mice lacking complex gangliosides exhibit reduced sensitivity to BoNT/G, and binding and entry of BoNT/A, B, and G into hippocampal neurons lacking gangliosides is diminished. These data suggest that gangliosides are the shared coreceptor for BoNT/A, B, and G, supporting a double-receptor model for these three BoNTs for which the protein receptors are known.  相似文献   

14.
Summary Detailed histochemical studies have been performed on the morphology of the Golgi apparatus (GA) by application of the thiamine pyrophosphatase (TPPase) method (Novikoff and Goldfischer, 1961) to the neurons of the locus coeruleus (LC) of normal and catecholamine biosynthesis inhibitors (fusaric acid and D, L--methyl-p-tyrosine methylester HCl) given adult healthy male Wistar strain rats. The neurons were classified into five categories on the basis of the morphology of the Golgi apparatus. The number of cells in individual categories was counted to evaluate the percentage of each category in the whole nucleus.The majority of cells belongs to Types II, III, and IV whose GA goes through cyclic activity, but the remaining neurons belong to Types I and V which may have a strong tendency to be different from the former in character. The latter neurons correspond formally with Types I and V of the rabbit LC, but they do not respond to the drugs administered. The rat LC is very similar to the dorsal vagal nucleus of the rabbit in regard to the dominant category. The present results indicate that the majority of the rat LC neurons may work vigorously and they may be motor neurons.Administration of the drugs caused reduction of TPPase activity, augmentation of disintegration and the budding-off process of the GA of Type IV, a decrease in the percentage of Type IV and an increase in that of Type II. Administration of 100 mg/kg fusaric acid caused maximal morphological change of the GA at the 90th minute; however, administration of 200 mg/kg fusaric acid showed more marked change of the GA, having two peaks and two valleys. The GA revealed much more intense reaction to D,L--methyl-p-tyrosine methylester HCl than to fusaric acid. The present results indicate that tyrosine hydroxylase may be the rate-limiting enzyme in the catecholamine biosynthesis.These noticeable changes of GA caused by administration of the drugs were completely restricted to the neurons of LC and the neurons of the mesencephalic nucleus of the trigeminal nerve did not show any morphological changes of the GA. These results strongly suggest that the GA of the rat LC neurons may have ability to synthesize catecholamine whereas the GA of the rat mesencephalic nucleus of the trigeminal nerve may be completely devoid of this ability and that the role of the GA may be different depending on the anatomical regions.  相似文献   

15.
目的和方法:采用全细胞膜片钳技术观察神经生长因子(NGF)分化后的PC12细胞对乙酰胆碱(ACh)的敏感性,并对ACh诱发电流(IACh)的特性进行分析。结果:NGF处理后的PC12乐仅形态上向交感神经元分化,而且具有电学兴奋性,它对ACh敏感性比未分化前显著提高。药理学鉴定表明PC12上的IACh是由烟碱受体(nAChR)引起的,具有明显的失敏特性。宏观IACh呈内向整流和浓度依赖性。结论:PC12细胞培养方便,同源性好,加入NGF后向交感神经元分化,且其具有神经元烟碱受体,可以作为交感神经元烟碱受体研究的很好的模型系统。  相似文献   

16.
1. Golgi-Kopsch preparations of the oral ventral nuclei of human thalamus were analyzed in an attempt to classify the neuronal types. 2. Three types of neurons are described for the first time in humans. Type I neurons are large or medium in size and bear dendrites with protrusions, spines, and short hair-like appendages. Some have a radiate dendritic arbor and others have dendrites grouped in tufts. The dendritic trees of these neurons are dense. 3. Type II neurons are medium or small in size with less dense dendritic trees. These cells have somatic as well as dendritic appendages of different forms. 4. Relatively rare is a type of very small neurons, type III, with few and sparsely branching dendrites.  相似文献   

17.
Glutamate-induced neurotoxicity and calpain activity were studied in primary cultures of rat cerebellar granule neurons and glial cells. Calpain activation, as monitored by quantitative immunoblotting of spectrin, required micromolar concentrations of Ca2+ in neuronal homogenates (calpain I) and millimolar Ca2+ concentrations in glial homogenates (calpain II). Glutamate-induced toxicity and calpain activation were observed in neuronal, but not in glial, cultures. In neurons, calpain I activation by glutamate was dose-dependent and persisted after withdrawal of neurotoxic doses of glutamate. Natural (GM1) and semisynthetic (LIGA4) gangliosides or the glutamate receptor blocker MK-801 prevented calpain I activation and delayed neuronal death elicited by glutamate. GM1 and LIGA4 had no effect on calpain I activity in neuronal homogenates, however. Furthermore, two calpain I inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal) prevented glutamate-induced spectrin degradation, but failed to affect glutamate neurotoxicity. These results thus suggest that glutamate-induced neurotoxicity is independent of calpain I activation.  相似文献   

18.
We have studied "in vivo" neurochemically identified striatal neurons to analyze the localisation and the trafficking of dopamine and acetylcholine G protein coupled receptors (GPCR) (D1R, D2R, m2R and m4R) under the influence of neurotransmitter environment. We have identified receptors in tissue sections through immunohistochemical detection at the light and electron microscopic level. We have identified receptors in normal animals and after acute and chronic stimulations. We have quantified receptors through image analysis at the electron microscopic level in relation to various subcellular compartments. Our results demonstrate that, in normal conditions, GPCRs are mostly associated with plasma membrane of the striatal neurons, mostly at extra-synaptic sites. In certain instances (m4R; D2R), receptors have prominent localisation inside the rough endoplasmic reticulum. Our results also show that two distinct receptors for a same neurotransmitter may have distinct subcellular localisation in a same neuronal population (m2R versus m4R) and that the same neurotransmitter receptor (m4R) can have distinct localisation in distinct neuronal populations (cytoplasm versus cell surface). After acute stimulation, cell surface receptors undergo dramatic subcellular changes that involve plasma membrane depletion, internalisation in endosomes and in multivesicular bodies. Such changes are reversible after the end of the stimulation and are blocked by antagonist action. Chronic stimulation also provokes changes in subcellular localisation with specific pattern: plasma membrane depletion, and exaggerated storage of receptors in rough endoplasmic reticulum and eventually Golgi complex (D1R; m2R and m4R). Decreasing chronic receptor stimulation reverses such changes. These results demonstrate that, "in vivo", in the striatum, GPCRs undergo complex intraneuronal trafficking under the influence of neurochemical environment in conditions that dramatically modulate the number of cell surface receptors available for interaction with neurotransmitters or drugs. This confirms that "in vivo", the trafficking and the subcellular compartmentalization of GPCRs may contribute to regulate neuronal sensitivity and neuronal interactions in physiological, experimental and pathological conditions, including in therapeutic conditions.  相似文献   

19.
As a dynamical model for motor cortical activity during hand movement we consider an artificial neural network that consists of extensively interconnected neuron-like units and performs the neuronal population vector operations. Local geometrical parameters of a desired curve are introduced into the network as an external input. The output of the model is a time-dependent direction and length of the neuronal population vector which is calculated as a sum of the activity of directionally tuned neurons in the ensemble. The main feature of the model is that dynamical behavior of the neuronal population vector is the result of connections between directionally tuned neurons rather than being imposed externally. The dynamics is governed by a system of coupled nonlinear differential equations. Connections between neurons are assigned in the simplest and most common way so as to fulfill basic requirements stemming from experimental findings concerning the directional tuning of individual neurons and the stabilization of the neuronal population vector, as well as from previous theoretical studies. The dynamical behavior of the model reveals a close similarity with the experimentally observed dynamics of the neuronal population vector. Specifically, in the framework of the model it is possible to describe a geometrical curve in terms of the time series of the population vector. A correlation between the dynamical behavior of the direction and the length of the population vector entails a dependence of the neural velocity on the curvature of the tracing trajectory that corresponds well to the experimentally measured covariation between tangential velocity and curvature in drawing tasks.On leave of absencefrom the Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号