首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
We describe replication-competent, vaccine strain-based rabies viruses (RVs) that lack their own single glycoprotein and express, instead, a chimeric RV-human immunodeficiency virus type 1 (HIV-1) envelope protein composed of the ectodomain and transmembrane domains of HIV-1 gp160 and the cytoplasmic domain of RV G. The envelope proteins from both X4 (NL4-3)- and R5X4 (89.6)-tropic HIV-1 strains were utilized. These recombinant viruses very closely mimicked an HIV-1- like tropism, as indicated by blocking experiments. Infection was inhibited by SDF-1 on cells expressing CD4 and CXCR4 for both viruses, whereas RANTES abolished infection of cells expressing CCR5 in addition to CD4 in studies of the RV expressing HIV-1(89.6) Env. In addition, preincubation with soluble CD4 or monoclonal antibodies directed against HIV-1 gp160 blocked the infectivity of both G-deficient viruses but did not affect the G-containing RVs. Our results also indicated that the G-deficient viruses expressing HIV-1 envelope protein, in contrast to wild-type RV but similar to HIV-1, enter cells by a pH-independent pathway. As observed for HIV-1, the surrogate viruses were able to target human peripheral blood mononuclear cells, macrophages, and immature and mature human dendritic cells (DC). Moreover, G-containing RV-based vectors also infected mature human DC, indicating that infection of these cells is also supported by RV G. The ability of RV-based vectors to infect professional antigen-presenting cells efficiently further emphasizes the potential use of recombinant RVs as vaccines.  相似文献   

2.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

3.
4.
The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.  相似文献   

5.
The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.  相似文献   

6.
7.
The magnitude and breadth of cytotoxic-T-lymphocyte (CTL) responses induced by human immunodeficiency virus type 1 (HIV-1) envelope protein from which the hypervariable V3 loop had been deleted (DeltaV3) were evaluated in the HLA-A2/K(b) transgenic mice. It was demonstrated that vaccines expressing the DeltaV3 mutant of either HIV-1(IIIB) or HIV-1(89.6) envelope glycoprotein induced broader CD8(+) T-cell activities than those elicited by the wild-type (WT) counterparts. Specifically, the differences were associated with higher responses to conserved HLA-A2-restricted CTL epitopes of the envelope glycoprotein and could be correlated with an increased cell surface occupancy by the epitope-HLA-A2 complexes in target cells expressing the DeltaV3 mutant. Using recombinant vaccinia virus expressing heterologous gp160 of primary HIV-1 isolates in a murine challenge system, we observed that the extent of resistance to viral transmission was higher in animals immunized with the DeltaV3 than the WT envelope vaccine. The protection was linked to the presence of envelope-specific CD8(+) T cells, since depletion of these cells by anti-CD8 antibody treatment at the time of challenge abolished the vaccine-induced protection. The results from our studies provide insights into approaches for boosting the breadth of envelope-specific CTL responses.  相似文献   

8.
DNA vaccines expressing the envelope (Env) of human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting immune responses. Oligomeric or trimeric (gp140) forms of Env that more closely mimic the native proteins on the virion are often more effective immunogens than monomeric (gp120) envelopes. In this study, several forms of Env constructed from the HIV-1 isolate YU-2 (HIV-1(YU-2)) were tested for their immunogenic potential: a trimeric form of uncleaved (-) Env stabilized with a synthetic trimer motif isolated from the fibritin (FT) protein of the T4 bacteriophage, sgp140(YU-2)(-/FT), was compared to sgp140(YU-2)(-) without a synthetic trimerization domain, as well as to monomeric gp120(YU-2). DNA plasmids were constructed to express Env alone or fused to various copies of murine C3d (mC3d). BALB/c mice were vaccinated (day 1 and week 4) with DNA expressing a codon-optimized envelope gene insert, alone or fused to mC3d. Mice were subsequently boosted (week 8) with the DNA or recombinant Env protein. All mice had high anti-Env antibody titers regardless of the use of mC3d. Sera from mice vaccinated with DNA expressing non-C3d-fused trimers elicited neutralizing antibodies against homologous HIV-1(YU-2) virus infection in vitro. In contrast, sera from mice inoculated with DNA expressing Env-C3d protein trimers elicited antibody that neutralized both homologous HIV-1(YU-2) and heterologous HIV-1(ADA), albeit at low titers. Therefore, DNA vaccines expressing trimeric envelopes coupled to mC3d, expressed in vivo from codon-optimized sequences, elicit low titers of neutralizing antibodies against primary isolates of HIV-1.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.  相似文献   

10.

Background

There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated.

Methods

The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets.

Results

Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization.

Conclusions

The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.  相似文献   

11.
To improve the safety of recombinant vaccinia virus vaccines, modified vaccinia virus Ankara (MVA) has been employed, because it has a replication defect in most mammalian cells. Here we apply MVA to human immunodeficiency virus type 1 (HIV-1) vaccine development by incorporating the envelope protein gp160 of HIV-1 primary isolate strain 89.6 (MVA 89.6) and use it to induce mucosal cytotoxic-T-lymphocyte (CTL) immunity. In initial studies to define a dominant CTL epitope for HIV-1 89.6 gp160, we mapped the epitope to a sequence, IGPGRAFYAR (from the V3 loop), homologous to that recognized by HIV MN loop-specific CTL and showed that HIV-1 MN-specific CTLs cross-reactively recognize the corresponding epitope from strain 89.6 presented by H-2Dd. Having defined the CTL specificity, we immunized BALB/c mice intrarectally with recombinant MVA 89.6. A single mucosal immunization with MVA 89.6 was able to elicit long-lasting antigen-specific mucosal (Peyer’s patch and lamina propria) and systemic (spleen) CTL responses as effective as or more effective than those of a replication-competent vaccinia virus expressing 89.6 gp160. Immunization with MVA 89.6 led to (i) the loading of antigen-presenting cells in vivo, as measured by the ex vivo active presentation of the P18-89.6 peptide to an antigen-specific CTL line, and (ii) the significant production of the proinflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) in the mucosal sites. These results indicate that nonreplicating recombinant MVA may be at least as effective for mucosal immunization as replicating recombinant vaccinia virus.  相似文献   

12.
13.
The human immunodeficiency virus (HIV)-1 envelope glycoprotein is synthesized as a precursor (gp160) and subsequently cleaved to generate the external gp120 and transmembrane gp41 glycoproteins. Both gp120 and gp41 have been demonstrated to mediate critical functions of HIV, including viral attachment and fusion with the cell membrane. The antigenic variability of the HIV-1 envelope glycoprotein has presented a significant problem in the design of appropriate and successful vaccines and offers one explanation for the ability of HIV to evade immune surveillance. Therefore, the development and characterization of functional antibodies against conserved regions of the envelope glycoprotein is needed. Because of this need, we generated a panel of murine monoclonal antibodies (MuMabs) against the HIV-1 envelope glycoprotein. To accomplish this, we immunized Balb/C mice with a recombinant glycoprotein 160 (gp160) that was synthesized in a baculovirus expression system. From the growth-positive hybridomas, three MuMabs were generated that demonstrated significant reactivity with recombinant gp120 but failed to show reactivity against HIV-1 gp41, as determined by enzyme-linked immunosorbent assay (ELISA). Using vaccinia constructs that synthesize variant truncated subunits of gp160, we were able to map reactivity of all three of the Mabs (ID6, AC4, and AD3) to the first 204 residues of gp120 (i.e., the N terminus of gp120) via Western blot analysis. Elucidation of the epitopes for these Mabs may have important implications for inhibition of infection by HIV-1. Our initial attempts to map these Mabs with linear epitopes have not elucidated a specific antigenic determinant; however, several physical characteristics have been determined that suggest a continuous surface epitope. Although these antibodies failed to neutralize cell-free or cell-associated infection by HIV-1, they did mediate significant antibody-dependent cellular cytotoxicity (ADCC) activity, indicating potential therapeutic utility. In summary, these data suggest the identification of a potentially novel site in the first 200 aa of gp120 that mediates ADCC.  相似文献   

14.
The human immunodeficiency virus type-1 (HIV-1) gp160 (gp120-gp41 complex) trimer envelope (ENV) protein is a potential vaccine candidate for HIV/AIDS. HIV-1 vaccine development has been problematic and charge polarity as well as sequence variation across clades may relate to the difficulties. Further obstacles are caused by sequence variation between blood and brain-derived sequences, since the brain is a separate compartment for HIV-1 infection. We utilize a threedimensional residue measure of solvent exposure, accessible surface area (ASA), which shows that major segments of gp120 and gp41 known structures are solvent exposed across clades. We demonstrate a large percent sequence polarity for solvent exposed residues in gp120 and gp41. The range of sequence polarity varies across clades, blood, and brain from different geographical locations. Regression analysis shows that blood and brain gp120 and gp41 percent sequence polarity range correlate with mean Shannon entropy. These results point to the use of protein modifications to enhance HIV-1 ENV vaccines across multiple clades, blood, and brain. It should be noted that we do not address the issue of protein glycosylation here; however, this is an important issue for vaccine design and development. ABBREVIATIONS: HIV-1 - human immunodeficiency virus type 1, AIDS - acquired immunodeficiency syndrome, ENV - envelope, gp160 - 160,000d glycoprotein, gp120 - 120,000d glycoprotein, gp41 - 41,000d glycoprotein, LANL - Los Alamos National Laboratories, PDB - Protein Data Bank, HVTN - STEP HIV vaccine trial, AA - amino acids, MSA - multiple sequence alignment, ASA - accessible surface area, SNPs- single nucleotide polymorphisms, HAART - Highly Active Antiretroviral Therapy, CCR5 - C-C chemokine receptor type 5, CNS - central nervous system, HIVE - HIV encephalitis, P - polarity, NP - non-polarity, CTL - cytotoxic T lymphocyte, NIAID - National Institute of Allergy and Infectious Diseases.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) subtype C infections are on the rise in Sub-Saharan Africa and Asia. Therefore, there is a need to develop an HIV vaccine capable of eliciting broadly reactive immune responses against members of this subtype. We show here that modified HIV envelope (env) DNA vaccines derived from the South African subtype C TV1 strain are able to prime for humoral responses in rabbits and rhesus macaques. Priming rabbits with DNA plasmids encoding V2-deleted TV1 gp140 (gp140TV1DeltaV2), followed by boosting with oligomeric protein (o-gp140TV1DeltaV2) in MF59 adjuvant, elicited higher titers of env-binding and autologous neutralizing antibodies than priming with DNA vaccines encoding the full-length TV1 env (gp160) or the intact TV1 gp140. Immunization with V2-deleted subtype B SF162 env and V2-deleted TV1 env together using a multivalent vaccine approach induced high titers of oligomeric env-binding antibodies and autologous neutralizing antibodies against both the subtypes B and C vaccine strains, HIV-1 SF162 and TV1, respectively. Low-level neutralizing activity against the heterologous South African subtype C TV2 strain, as well as a small subset of viruses in a panel of 13 heterologous primary isolates, was observed in some rabbits immunized with the V2-deleted vaccines. Immunization of rhesus macaques with the V2-deleted TV1 DNA prime/protein boost also elicited high titers of env-binding antibodies and moderate titers of autologous TV1 neutralizing antibodies. The pilot-scale production of the various TV1 DNA vaccine constructs and env proteins described here should provide an initial platform upon which to improve the immunogenicity of these subtype C HIV envelope vaccines.  相似文献   

16.
A Carmichael  X Jin    P Sissons 《Journal of virology》1996,70(12):8468-8476
Major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL) are part of the cellular immune response to persistent virus infections. Candidate vaccines against human immunodeficiency virus type 1 (HIV-1) should elicit broad cross-reactive immunity to confer protection against different strains of HIV-1. As it is likely that candidate vaccines will include the envelope gene product Env, we determined the proportion of CTL clones which recognized variable and conserved determinants in three env variants during natural infection. Limiting dilution analysis was used to characterize numerous short-term CTL clones derived from peripheral blood of HIV-1-infected subjects, using split-well analysis to assay cytotoxicity against target cells expressing gp160env of HIV-1 strains IIIB, MN, and RF. In 9 of 12 HIV-1-infected subjects, at the clonal level most env-specific CTL recognized determinant(s) within one env variant but not in the other variants. In some subjects, CTL recognized multiple nonconserved determinants in different variants. The pattern of recognition of different env variants was relatively stable over time. In most of the patients studied, the proportion of CTL which showed cross-recognition of conserved determinants shared among the three strains was low. Two novel CTL epitopes within gp41 were identified by using 15-mer peptides of the HIV-SF2 sequence. When specific peptide was used to stimulate CTL precursors in vitro, the frequency of peptide-specific CTL precursors was very high, but the CTL elicited by this stimulation were highly strain specific. We conclude that the use of a single HIV env variant to detect CTL activity can underestimate the magnitude and complexity of the env-specific CTL response. The low prevalence of CTL clones which show cross-recognition of conserved determinants may have implications for immunization strategies based solely on env; to elicit broadly cross-reactive CTL other, more conserved viral antigens are likely to be needed in addition to env. Because of its capacity to distinguish CTL responses against different virus strains, limiting dilution analysis is particularly appropriate to quantitate the immune responses generated by candidate env-based vaccines.  相似文献   

17.
18.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1( )-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.  相似文献   

19.
A Achour  F Bex  P Hermans  A Burny    D Zagury 《Journal of virology》1996,70(10):6741-6750
Cytotoxic T lymphocytes (CTL) may be important to prevent cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), the agent responsible for AIDS. In this study, we investigated the epitope specificity of CTLs induced in individuals immunized against the virus envelope glycoprotein gp160. The determinant of HIV-1 gp160 for the stimulation of CTL is located in a region of high sequence variability among HIV-1 isolates, the so-called V3 loop P18. Using a panel of P18 peptides, we compared the CTL specificities of cells from two individuals immunized with vaccinia virus recombinants expressing the envelope glycoproteins from two different strains of HIV-1, IIIB and SIMI. For this purpose, CTLs specific for the IIIB P18 peptide (RIQRGPGRAFVTIGK) were compared with CTLs for the site from the SIMI isolate (TLHMGPKRAFYATGD). The results indicate that in contrast to CD8+ CTLs induced by the glycoprotein from strain IIIB, CD8+ CTLs induced by strain SIMI strongly cross-reacted with targets presenting P18 peptides as well as envelope proteins from the divergent MN and RF isolates but failed to cross-react with targets that presented the IIIB peptide. These data have implications for the design of an HIV vaccine.  相似文献   

20.
M cell DNA vaccination for CTL immunity to HIV   总被引:3,自引:0,他引:3  
To facilitate invasion, reovirus has evolved to attach to M cells, a specialized epithelium residing within the follicle-associated epithelium that covers mucosal inductive tissues. Thus, we questioned adapting reovirus protein sigma1 to ferry DNA vaccines to the mucosa to immunize against HIV. Three expression plasmids encoding HIV(Ba-L) gp160, cytoplasmic gp140, and secreted gp140 were tested in mice as protein sigma1-poly-L-lysine-DNA complexes (formulated vaccine) via the intranasal route. Evaluation of cell-mediated immunity showed that the formulated gp160 DNA vaccine was more effective for stimulating envelope (Env)-specific CTL responses in lungs, lower respiratory lymph nodes (LN), cervical LN, submaxillary gland LN, and spleens. Three doses of vaccine were required for CTL responses, and intranasal naked DNA immunizations were ineffective. The greatest CTL activity was observed between weeks 8 and 10 for gp160-vaccinated mice, and activity remained detectable by week 16. These Env-specific CTL responses were perforin dependent in peripheral tissues, but mostly Fas dependent in the lungs. These Env-specific CTLs also produced IFN-gamma. Mice vaccinated with the formulated gp160 DNA vaccine showed potent antiviral immunity against vaccinia virus-env replication in ovaries. Thus, compared with live vectors, protein sigma1-mediated DNA delivery represents an alternative mucosal formulation for inducing cellular immunity against HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号