首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous chromosomes exchange genetic information through recombination during meiotic synapsis, a process that increases genetic diversity and is fundamental to sexual reproduction. Meiotic studies in mammalian species are scarce and mainly focused on human and mouse. Here, the meiotic recombination events were determined in three species of Platyrrhini monkeys (Cebus libidinosus, Cebus nigritus and Alouatta caraya) by analysing the distribution of MLH1 foci at the stage of pachytene. Moreover, the combination of immunofluorescence and fluorescent in situ hybridisation has enabled us to construct recombination maps of primate chromosomes that are homologous to human chromosomes 13 and 21. Our results show that (a) the overall number of MLH1 foci varies among all three species, (b) the presence of heterochromatin blocks does not have a major influence on the distribution of MLH1 foci and (c) the distribution of crossovers in the homologous chromosomes to human chromosomes 13 and 21 are conserved between species of the same genus (C. libidinosus and C. nigritus) but are significantly different between Cebus and Alouatta. This heterogeneity in recombination behaviour among Ceboidea species may reflect differences in genetic diversity and genome composition.  相似文献   

2.

Background  

Chromosomal painting, using whole chromosome probes from humans and Saguinus oedipus, was used to establish karyotypic divergence among species of the genus Cebus, including C. olivaceus, C. albifrons, C. apella robustus and C. apella paraguayanus. Cytogenetic studies suggested that the species of this genus have conservative karyotypes, with diploid numbers ranging from 2n = 52 to 2n = 54.  相似文献   

3.
Chromosome comparisons usingin situhybridization of all human chromosome-specific libraries on Capuchin monkey (Cebus capucinus,Cebidae, Platyrrhini) metaphases were performed with a new technique simultaneously revealing a G-banding and chromosome “painting.” A complete homology between human (HSA) andC. capucinus(CCA) chromosomes was demonstrated, except for constitutive heterochromatin. ElevenC. capucinuschromosomes are homologous to 11 human chromosomes: CCA 2 = HSA 4; CCA 3 = HSA 6; CCA 12 = HSA 9; CCA 16 = HSA 11; CCA 10 = HSA 12; CCA 11 = HSA 13; CCA 20 = HSA 17; CCA 8 = HSA 19; CCA 23 = HSA 20; CCA 24 = HSA 22; and CCA X = HSA X. TenC. capucinuschromosomes are homologous to parts of human chromosomes: CCA 13 = HSA 8q; CCA 14 = HSA 2q; CCA 15 = HSA 1p + 1q proximal; CCA 17 = HSA 7 part; CCA 18 and 19 = HSA 3 part; CCA 21 and 22 = HSA 1q distal; CCA 25 = HSA 10p; and CCA 26 = HSA 15q part. SixC. capucinuschromosomes are homologous to parts of two human chromosomes: CCA 1 = HSA 5 + 7 part; CCA 4 = HSA 2p + q proximal + 16q; CCA 5 = HSA 10q + 16p; CCA 6 = HSA 14 + 15 part; CCA 7 = HSA 8p + 18; and CCA 9 = HSA 3 part + 21. Many previous banding comparisons were confirmed but several cryptic or complex rearrangements could be identified. With theC. capucinuskaryotype having been shown to be fairly ancestral, this comparison opens the possibility to compare human chromosomes to most Cebidae species.  相似文献   

4.
Cytogenetic studies have shown that New World primates are karyologically diverse and highly derived. The genus Callicebus is the best example of this karyological diversity, with diploid numbers ranging from 2n=50 to 2n=16. We report on Callicebus lugens, which has the lowest diploid number (2n=16) yet found in the primate order and represents a striking example of extreme karyotypic shuffling. To better understand the genomic rearrangements that have resulted in this extremely low diploid number, we mapped chromosome homologies between C. lugens and humans by in situ hybridization. The total number of hybridization signals was 42, excluding the Y chromosome, with a total of 34 syntenic associations not found in humans. This species has one of the most derived karyotypes among the Platyrrhini. Fusion has been the predominant mode of karyological evolution, although fissions and inversions have also transformed the C. lugens karyotype. Remarkably in such a highly rearranged karyotype, the synteny of 11 human chromosomes (4, 5, 9, 12, 13, 14, 17, 18, 20, 21, and X) was maintained intact, even if most of these human-homologous gene clusters were translocated. Other human syntenies, such as homologues to human chromosomes 10 and 16, were highly fragmented. Comparisons of the C. lugens-human homology map with those of other New World primates have not yet helped establish a phylogenic arrangement between congeneric species or link Callicebus with any other genus.Communicated by S. Henikoff  相似文献   

5.
Human chromosome 7 has a complex syntenic origin. It was divided into two segments in both the ancestral primate karyotype and in Platyrrhini. Apparently, a small segment in the ancestral platyrrhine karyotype was associated with HSA5 and the remainder formed a middle‐sized submetacentric. We tested the dynamics of platyrrhine chromosomes by hybridizing the locus specific Willams‐Beuren probe (7q 11.23, 450 kb) to chromosomes of representative species from the three families of the New World monkeys recently proposed by molecular genomics: Cebidae, Callithrix argentata (bare ear marmoset or silvery marmoset, 2n = 44); Pitheciidae, Callicebus cupreus [red titi monkey, or coppery monkey, 2n = 46)] and Atelidae, Alouatta caraya (black and gold howler, 2n = 52). In both the marmoset and the howler monkeys, the signal was found on the small segment of chromosome 7 associated with human chromosome 5, but not in Callicebus cupreus. Instead, the Williams‐Beuren syndrome (WS) signal was found on a C. cupreus chromosome previously reported to be hybridized only by human chromosome 1. The WS probe indicates a small, but complex translocation never described before. Our results point out that fluorescence in situ hybridization (FISH) with locus specific probes and cloned DNA fragments such as bacterial aftificial chromosomes (BACs) provides higher resolution than FISH with whole chromosomes paints. It may be well that the variability seen in the hybridization patterns and revealed by the WS FISH in this report is as a result of a rearrangement ‘hot spot’. The WS region in humans is composed of region‐specific different blocks of complex segmental duplications that probably promote the extraordinary rate of evolutionary dynamics of this region among primate species, and which continues to be reflected today by the predisposition of this region to disease syndromes such as WS. The evolutionary history of this region also suggests that repeat families in this region had their origin in a common ancestor of both Old World and New World monkeys.  相似文献   

6.
The results of qualitative heterochromatin analysis in 16 species of primates: Homo sapiens , Pan troglodytes and Gorilla gorilla (F. Hominidae), Hylobates syndactilus (F. Hylobatidae), Macaca fascicularis , M. tibetana , Mandrillus sphinx , M. leucophaeus , Cercopithecus aethiops , C. sabaeus and C. albogularis (F. Cercopithecidae), Cebus apella , Ateles belzebuth hybridus , Aotus azarae , Saimiri sciureus and Lagothrix lagothricha (F. Cebidae) are presented in this work. We characterized heterochromatin using: (a) in situ digestion with restriction enzymes AluI, HaeIII, RsaI and Sau3A, and (b) chromosome staining with DA/DAPI on unbanded chromosomes, on C-banded chromosomes and on sequentially G-C-banded chromosomes. The aim of this work was to relate the qualitative characteristics of constitutive heterochromatin observed with the cytogenetic evolutive processes in the primate group. Results obtained show that (1) in the family Cercopithecidae, Papionini species do not present chromosomal rearrangements when their karyotypes are compared and the heterochromatin characteristics are uniform, while Cercopithecini species show a high number of chromosomal reorganizations, but they have the same heterochromatic characteristics; (2) the Platyrrhini species analysed show variability in their karyological and heterochromatic characteristics; (3) the Hominoidea present two different situations: Pan , Gorilla and Homo with few chromosomal reorganizations among their karyotypes but with a high variability in their heterochromatin characteristics, and Hylobates with low heterochromatin variability and a highly derived karyotype. Speciation processes related to chromosome changes and heterochromatin variations in different groups of primates are discussed.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 107–124.  相似文献   

7.
The genus Ctenomys comprises about 70 species with great chromosome diversity. The Corrientes group is one of the most chromosomally variable lineages in the genus, where the diploid number (2n) varies from 41 to 70. In this group, three nominal species and numerous polymorphic and polytypic populations have been described. In order to get insight into the chromosomal evolution of this species complex, we applied different banding and molecular cytogenetic techniques. The results were interpreted in an evolutionary context, based on mitochondrial cytochrome b analyses. Studied samples are representative of the broad chromosomal variability in the group, including specimens with 2n?=?42 to 2n?=?70. Heterochromatin was scarce but concentrated in a few chromosomes. Centromeric DAPI-negative heterochromatin was observed in some autosomal pairs, which differed among populations. Location and amount of DAPI-neutral heterochromatin within the Y chromosome varied among populations. The variable distribution of heterochromatin indicates its dynamic behavior. NORs were detected in one pair of autosomes, which also differed among some populations. Telomeric FISH signals were observed in all complements only at the chromosome ends. The Corrientes group belongs to a clade that also includes C. pearsoni, C. lami, C. minutus, C. ibicuiensis and C. torquatus. Almost all of these species are variable at the chromosomal level, suggesting that this is the ancestral condition of the clade. Within the Corrientes group, the observed low genetic divergence, in contrast with its high chromosomal variability, is indicative of decoupling between the rates of chromosomal and mitochondrial evolution.  相似文献   

8.
In this paper, we present the comparative study of the karyotypes ofCebus apella (Platyrrhini, Cebidae) from two different regions of South America: Paraguay and Argentina. Forty-two adult animals were analyzed and we observed similar karyotypes in bothCebus apella. Likewise, we found different chromosome aberrations: inv(4), inv(7), inv(2), and t(3; 4) in specimens from Paraguay and Argentina. These findings support the intraspecific variability of these New World monkeys.  相似文献   

9.
Chromosome rearrangements are considered as "rare genomic changes" and can provide useful markers and even landmarks for reconstructing phylogenies complementary to DNA sequence data and bio-morphological comparisons. Here, we applied multi-directional chromosome painting to reconstruct the chromosome phylogeny and evolutionary relationships among the New World monkey (Platyrrhini) species Callithrix argentata, Cebuella pygmaea, Saguinus oedipus, Callithrix jacchus and Callimico goeldii. The results clarified several aspects of New Wold monkey phylogeny. In particular the phylogenetic position of C. goeldii was elucidated, which has been controversially discussed and variously classified in the family Callitrichidae, in the family Cebidae or in its own family Callimiconidae. Comparative genome maps were established by multi-color fluorescence in situ hybridization (FISH) with human, S. oedipus and Lagothrix lagothricha chromosome- specific DNA probes. From these data we reconstructed the putative ancestral karyotype of all Callitrichidae. Various derived chromosomal syntenies are shared by all five species and cytogenetically define Callitrichidae - including Callimico goeldii -- as a distinctive group within the Platyrrhini. C. pygmaea and C. argentata share identical chromosomal syntenies from which S. oedipus and C. jacchus differ by single independent translocations. A common derived chromosomal change links Callimico with the marmosets to the exclusion of the tamarins, however, it has further diverged from an ancestral marmoset karyotype by at least four apomorphic rearrangements. Saimiri sciureus, representing the Cebinae, exclusively shares a derived syntenic association with all Callithrichidae, defining the genus Saimiri as a sister group.  相似文献   

10.
The differentiation of sex chromosomes is thought to be interrupted by relatively frequent sex chromosome turnover and/or occasional recombination between sex chromosomes (fountain-of-youth model) in some vertebrate groups as fishes, amphibians, and lizards. As a result, we observe the prevalence of homomorphic sex chromosomes in these groups. Here, we provide evidence for the loss of sex chromosome heteromorphism in the Amazonian frogs of the genus Engystomops, which harbors an intriguing history of sex chromosome evolution. In this species complex composed of two named species, two confirmed unnamed species, and up to three unconfirmed species, highly divergent karyotypes are present, and heteromorphic X and Y chromosomes were previously found in two species. We describe the karyotype of a lineage estimated to be the sister of all remaining Amazonian Engystomops (named Engystomops sp.) and perform chromosome painting techniques using one probe for the Y chromosome and one probe for the non-centromeric heterochromatic bands of the X chromosome of E. freibergi to compare three Engystomops karyotypes. The Y probe detected the Y chromosomes of E. freibergi and E. petersi and one homolog of chromosome pair 11 of Engystomops sp., suggesting their common evolutionary origin. The X probe showed no interspecific hybridization, revealing that X chromosome heterochromatin is strongly divergent among the studied species. In the light of the phylogenetic relationships, our data suggest that sex chromosome heteromorphism may have occurred early in the evolution of the Amazonian Engystomops and have been lost in two unnamed but confirmed candidate species.Subject terms: Cytogenetics, Evolutionary genetics  相似文献   

11.
Chromosome studies in six wild-caught specimens of Cebus apella xanthosternos showed a distinctive chromosome pair number 11 that made it possible to distinguish this subspecies from other Cebus apella. The characteristic chromosome pair had intercalar heterochromatin unlike the “standard” chromosome type of Cebus apella and other species of the same genus, in which this chromosome pair shows a large, terminal, heterochromatic block. A comparison at the chromosomal level between different Cebus apella populations suggests that chromosome 11 in Cebus apella xanthosternos is a derived chromosome that has probably become fixed in this subspecies, either by selection or by drift in a small isolated population.  相似文献   

12.
The satellite DNA Msat-160 has been previously characterized in several species of the genus Microtus. Here we present the characterization of Msat-160 from Chionomys nivalis, a species with a very primitive karyotype. As in other Microtus species analyzed, C. nivalis Msat-160 is AT rich, has a monomer length of 160 bp, is undermethylated and is mainly located in all the pericentromeric heterochromatin of all autosomes and the X chromosome, but is completely absent from the Y chromosome. Hence, our results support the hypothesis that Msat-160 was initially distributed in the pericentromeric heterochromatin of all autosomes and the X chromosome. The taxonomic status of the genus Chionomys in relation to the genus Microtus is a very interesting issue, so we constructed phylogenetic dendrograms using Msat-160 sequences from several Microtus species. Although the results were not informative about this issue, the presence of Msat-160 in C. nivalis and Microtus species suggested that both genera are closely related and that this satellite DNA was present in the common ancestor. Studies of Msat-160 in different arvicoline species could help to determine the origin of this satellite and, perhaps, to establish the phylogenetic relationships of some arvicoline groups.  相似文献   

13.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

14.
ZOO-FISH (Fluorescent "in vitro" hybridization) was used to establish the chromosomal homology between humans (HSA) and Cebus nigrivitatus (CNI) and Ateles belzebuth hybridus (ABH). These two species belong to different New World monkey families (Cebidae and Atelidae, respectively) which differ greatly in chromosome number and in chromosome morphology. The molecular results were followed by a detailed banding analysis. The ancestral karyotype of Cebus was then determined by a comparison of in situ hybridization results, as well as chromosomal morphology and banding in other Platyrrhini species. The karyotypes of the four species belonging to the genus Cebus differ from each other by three inversions and one fusion as well as in the location and amounts of heterochromatin. Results obtained by ZOO-FISH in ABH are in general agreement with previous gene-mapping and in situ hybridization data in Ateles, which show that spider monkeys have highly derived genomes. The chromosomal rearrangements detected between HSA and ABH on a band-to-band basis were 27 fusions/fissions, 12 centromeric shifts, and six pericentric inversions. The ancestral karyotype of Cebus was then compared with that of Ateles. The rearrangements detected were 20 fusions/fissions, nine centromeric shifts, and five inversions. Atelidae species are linked by a fragmentation of chromosome 4 into three segments forming an association of 4/15, while Ateles species are linked by 13 derived associations. The results also helped clarify the content of the ancestral platyrrhine karyotype and the mode of chromosomal evolution in these primates. In particular, associations 2/16 and 5/7 should be included in the ancestral karyotype of New World monkeys.  相似文献   

15.
We report on the cytogenetics of twin offspring from an interspecies cross in marmosets (Callitrichinae, Platyrrhini), resulting from a pairing between a female Common marmoset (Callithrix jacchus, 2n = 46) and a male Pygmy marmoset (Cebuella pygmaea, 2n = 44). We analyzed their karyotypes by multi-directional chromosome painting employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. Both hybrid individuals had a karyotype with a diploid chromosome number of 2n = 45. As a complementary tool, interspecies comparative genomic hybridization (iCGH) was performed in order to screen for genomic imbalances between the hybrids and their parental species, and between Callithrix argentata and S. oedipus, respectively. These genomic imbalances were confined to centromeric and telomeric heterochromatin, while euchromatic chromosome regions appeared balanced in all species investigated. When comparing marmosets and tamarins, sequence divergence of centromeric heterochromatin was already clearly noticeable. In the C. argentata and C. pygmaea genomes numerous subtelomeric regions were affected by amplification of different repetitive sequences. Cross-species FISH with a microdissection-derived C. pygmaea repetitive probe revealed species specificity of this repetitive sequence at the molecular cytogenetic level of resolution.  相似文献   

16.
Some species of the genus Characidium have heteromorphic ZZ/ZW sex chromosomes with a totally heterochromatic W chromosome. Methods for chromosome microdissection associated with chromosome painting have become important tools for cytogenetic studies in Neotropical fish. In Characidium cf. fasciatum, the Z chromosome contains a pericentromeric heterochromatin block, whereas the W chromosome is completely heterochromatic. Therefore, a probe was produced from the W chromosome through microdissection and degenerate oligonucleotide-primed polymerase chain reaction amplification. FISH was performed using the W probe on the chromosomes of specimens of this species. This revealed expressive marks in the pericentromeric region of the Z chromosome as well as a completely painted W chromosome. When applying the same probe on chromosome preparations of C. cf. gomesi and Characidium sp., a pattern similar to C. cf. fasciatum was found, while C. cf. zebra, C. cf. lagosantense and Crenuchus spilurus species showed no hybridization signals. Structural changes in the chromosomes of an ancestral sexual system in the group that includes the species C. cf. gomesi, C. cf. fasciatum and Characidium sp., could have contributed to the process of speciation and could represent a causal mechanism of chromosomal diversification in this group. The heterochromatinization process possibly began in homomorphic and homologous chromosomes of an ancestral form, and this process could have given rise to the current patterns found in the species with sex chromosome heteromorphism.  相似文献   

17.
Due to contradicting relationships obtained from various morphological and genetic studies, phylogenetic relationships among New World monkey genera are highly disputed. In the present study, we analyzed the presence/absence pattern of 128 SINE integrations in all New World monkey genera. Among them, 70 were specific for only a single genus, whereas another 18 were present in all New World monkey genera. The 40 remaining insertions were informative to elucidate phylogenetic relationships among genera. Several of them confirmed the monophyly of the three families Cebidae, Atelidae and Pitheciidae as well as of the subfamily Callithrichinae. Further markers provided evidence for a sister grouping of Cebidae and Atelidae to the exclusion of Pitheciidae as well as for relationships among genera belonging to Callithrichinae and Atelidae. Although a close affiliation of Saimiri, Aotus and Cebus to Callithrichinae was shown, the relationships among the three genera remained unresolved due to three contradicting insertions.  相似文献   

18.
Heterochromatin distribution and chromosomal rearrangements have been proposed as the main sources of karyotype differences among species of Neotropical primates. This variability suggests that there could be differences at other smaller‐scale levels of DNA organization as well. In particular, quantitative differences between genomes result from gains and losses of individual DNA segments, and may result in varying genome sizes (C‐values) among species. In this work, we studied the genomes of 23 individuals from four species in the genus Ateles (Primates: Platyrrhini): A. chamek, A. paniscus, A. belzebuth, and A. geoffroyi. We analyzed genome size and its relationship with the presence of chromosomal rearrangements and patterns of heterochromatin distribution. The C‐value presented in this work for Ateles chamek is the first estimate for this species (3.09 ± 0.23 pg), whereas our estimates for A. belzebuth (2.88 ± 0.06 pg) and A. geoffroyi (3.19 ± 0.24 pg) differed from those previously published. Fluorescent in situ hybridization (FISH) and interspecies comparativegenomic hybridization (iCGH) analyses revealed that differences in genome size among species relate to localized blocks in both heterochromatic and euchromatic regions, the latter of which appear to be genetically unstable. There were also quantitative differences in Y chromosome content. It remains to be seen whether the chromosomal characteristics of Ateles here discussed are common to platyrrhine monkeys, but it is clear that these monkeys exhibit some intriguing genomic features worthy of additional exploration.  相似文献   

19.
Mhc-DRB genes of platyrrhine primates   总被引:3,自引:3,他引:0  
The two infraorders of anthropoid primates, Platyrrhini (New World monkeys) and Catarrhini (Old World monkeys and the hominoids) are estimated to have diverged from a common ancestor 37 million years ago. The major histocompatibility complex class II DRB gene and haplotype polymorphism of the Catarrhini has been characterized in several recent studies. The present study was undertaken to obtain information on the DRB polymorphism of the Platyrrhini. Fifty-five complete exon 2 DRB sequences were obtained from six species of Platyrrhini representing both the Callitrichidae and the Cebidae families. Combined with the results of a parallel contig mapping study, our data indicate that at least three loci (DRB1*03, DRB3, and DRB5) are shared by the Catarrhini and the Platyrrhini. However, the three loci are occupied by functional genes in the former infraorder and mostly by pseudogenes in the latter. Instead of the pseudogenes, the Platyrrhini have evolved a new set of apparently functional genes — DRB11 and DRB*W12 through DRB*W19, which have thus far not been found in the Catarrhini. The DRB*W13, *W14, *W15, *W17, *W18, and *W19 genes seem to be restricted to the Cebidae family, whereas the DRB*W16 locus has so far been documented in the Callitrichidae family only. The DRB alleles of the cotton-top tamarin, and perhaps also those of the common marmoset (both members of the family Callitrichidae), are characterized by low nucleotide diversity, possibly indicating that they diverged from a common ancestral gene relatively recently. Correspondence to: J. Klein.  相似文献   

20.

Background

The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first report of reciprocal painting in marmosets.

Results

The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45 hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint on human chromosome 13 was found in Callithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the other to Goeldi's marmoset.

Conclusion

The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin monkeys; congruent with a basal position of the Cebidae among platyrrhine families.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号