首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High affinity iron uptake in yeast is carried out by a multicomponent system formed by the ferroxidase Fet3p and the iron permease Ftr1p. The currently accepted model predicts that Fet3p and Ftr1p are functionally associated, however, a structural interaction between these two proteins has not been proven yet. The methylotrophic yeast Pichia pastoris has been used to perform cross-linking studies aimed to demonstrate the existence of a Fet3p-Ftr1p complex. Cross-linking of membrane suspensions with the membrane-impermeable reagents DTSSP and BS(3) has evidenced the presence of a high molecular weight band with Fet3p oxidase activity. This band has been purified and subjected to N-terminal sequence analysis. Two sequences were found in the cross-linked species, one of which could be assigned to Fet3p and the other to Ftr1p. This is the first experimental demonstration that Fet3p and Ftr1p are physically associated.  相似文献   

2.
High affinity iron uptake in fungi is supported by a plasma membrane protein complex that includes a multicopper ferroxidase enzyme and a ferric iron permease. In Saccharomyces cerevisiae, this complex is composed of the ferroxidase Fet3p and the permease Ftr1p. Fe(II) serves as substrate for Fe-uptake by being substrate for Fet3p; the resulting Fet3p-produced Fe(III) is then transported across the membrane via Ftr1p. A model of metabolite channeling of this Fe(III) is tested here by first constructing and kinetically characterizing in Fe-uptake two Fet3p-Ftr1p chimeras in which the multicopper oxidase/ferroxidase domain of Fet3p has been fused to the Ftr1p iron permease. Although the bifunctional chimeras are as kinetically efficient in Fe-uptake as is the wild type two-component system, they lack the adaptability and fidelity in Fe-uptake of the wild type. Specifically, Fe-uptake through the Fet3p, Ftr1p complex is insensitive to a potential Fe(III) trapping agent - citrate - whereas Fe-uptake via the chimeric proteins is competitively inhibited by this Fe(III) chelator. This inhibition does not appear to be due to scavenging Fet3p-produced Fe(III) that is in equilibrium with bulk solvent but could be due to leakiness to citrate found in the bifunctional but not the two-component system. The data are consistent with a channeling model of Fe-trafficking in the Fet3p, Ftr1p complex and suggest that in this system, Fet3p serves as a redox sieve that presents Fe(III) specifically for permeation through Ftr1p.  相似文献   

3.
Kwok EY  Severance S  Kosman DJ 《Biochemistry》2006,45(20):6317-6327
In high-affinity iron uptake in the yeast Saccharomyces cerevisiae, Fe(II) is oxidized to Fe(III) by the multicopper oxidase, Fet3p, and the Fe(III) produced is transported into the cell via the iron permease, Ftr1p. These two proteins are likely part of a heterodimeric or higher order complex in the yeast plasma membrane. We provide kinetic evidence that the Fet3p-produced Fe(III) is trafficked to Ftr1p for permeation by a classic metabolite channeling mechanism. We examine the (59)Fe uptake kinetics for a number of complexes containing mutant forms of both Fet3p and Ftr1p and demonstrate that a residue in one protein interacts with one in the other protein along the iron trafficking pathway as would be expected in a channeling process. We show that, as a result of some of these mutations, iron trafficking becomes sensitive to an added Fe(III) chelator that inhibits uptake in a strictly competitive manner. This inhibition is not strongly dependent on the chelator strength, however, suggesting that Fe(III) dissociation from the iron uptake complex, if it occurs, is kinetically slow relative to iron permeation. Metabolite channeling is a common feature of multifunctional enzymes. We constructed the analogous ferroxidase, permease chimera and demonstrate that it supports iron uptake with a kinetic pattern consistent with a channeling mechanism. By analogy to the Fe(III) trafficking that leads to the mineralization of the ferritin core, we propose that ferric iron channeling is a conserved feature of iron homeostasis in aerobic organisms.  相似文献   

4.
Glycosylation is essential to the maintenance of protein quality in the vesicular protein trafficking pathway in eukaryotic cells. Using the yeast multicopper oxidase, Fet3p, the hypothesis is tested that core glycosylation suppresses Fet3p nascent chain aggregation during synthesis into the endoplasmic reticulum (ER). Fet3p has 11 crystallographically mapped N‐linked core glycan units. Assembly of four of these units is specifically required for localization of Fet3p to the plasma membrane (PM). Fet3 protein lacking any one of these glycan units is found in an intracellular high‐molecular mass species resolvable by blue native gel electrophoresis. Individually, the remaining glycan moieties are not required for ER exit; however, serial deletion of these by N → A substitution correlates with these desglycan species failure to exit the ER. Desglycan Fet3 proteins that localize to the PM are wild type in function indicating that the missing carbohydrate is not required for native structure and biologic activity. This native function includes the interaction with the iron permease, Ftr1p, and wild type high‐affinity iron uptake activity. The four essential sequons are found within relatively nonpolar regions located in surface recesses and are strongly conserved among fungal Fet3 proteins. The remaining N‐linked sites are found in more surface exposed, less nonpolar environments, and their conservation is weak or absent. The data indicate that in Fet3p the N‐linked glycan has little effect on the enzyme's molecular activity but is critical to its cellular activity by maximizing the protein's exit from the ER and assembly into a functional iron uptake complex.  相似文献   

5.
The Fet3 protein in Saccharomyces cerevisiae is a multicopper oxidase tethered to the outer surface of the yeast plasma membrane. Fet3p catalyzes the oxidation of Fe(2+) to Fe(3+); this ferroxidation reaction is an obligatory first step in high-affinity iron uptake through the permease Ftr1p. Here, kinetic analyses of several Fet3p mutants identify residues that contribute to the specificity that Fet3p has for Fe(2+), one of which is essential also to the coupling of the ferroxidase and uptake processes. The spectral and kinetic properties of the D278A, E185D and A, Y354F and A, and E185A/Y354A mutants of a soluble form of Fet3p showed that all of the mutants exhibited the normal absorbance at 330 nm and 608 nm due to the type 3 and type 1 copper sites in Fet3p, respectively. The EPR spectra of the mutants were also equivalent to wild-type, showing that the type 1 and type 2 Cu(II) sites in the proteins were not perturbed. The only marked kinetic defects measured in vitro were increases in K(M) for Fe(2+) exhibited by the D278A, E185A, Y354A, and E185A/Y354A mutants. These results suggest that these three residues contribute to the ferroxidase specificity site in Fet3p. In vivo analysis of these mutant proteins in their membrane-bound form showed that only E185 mutants exhibited kinetic defects in (59)Fe uptake. For the Fet3p(E185D) mutant, K(M) for iron was 300-fold greater than the wild-type K(M), while Fet3p(E185A) was completely inactive in support of iron uptake. In situ fluorescence demonstrated that all of the mutant Fet3 proteins, in complex with an Ftr1p:YFP fusion protein, were trafficked normally to the plasma membrane. These results suggest that E185 contributes to Fe(2+ )binding to Fet3p and to the subsequent trafficking of the Fe(3+) produced to Ftr1p.  相似文献   

6.
7.
The metalloreductase Fre6p in Fe-efflux from the yeast vacuole   总被引:2,自引:0,他引:2  
The yeast vacuole is the storage depot for cellular iron. In this report we quantify the import-export balance in the vacuole because of the import of iron by Ccc1p and to export by the combined activity of Smf3p and the ferroxidase, permease pair of proteins, Fet5p and Fth1p. Our data indicate that the two efflux pathways are equally efficient in trafficking iron out of the vacuole. A major focus of this work was to identify the ferrireductase(s) that supplies the Fe(II) for efflux whether by Smf3p or the Fet5p-Fth1p complex. Using a combination of flameless atomic absorption spectrophotometry to quantify vacuolar and whole cell iron content and a reporter assay for cytoplasmic iron we demonstrate that Fre6p supplies Fe(II) to both efflux systems, while Fre7p plays no role in Fe-efflux from the vacuole. Enzymatic assay shows the two fusions to have similar reductase activity, however. Confocal fluorescence microscopy demonstrates that Fre6:GFP localizes to the vacuolar membrane; in contrast, Fre7:GFP fusions exhibit a variable and diffuse cellular distribution. Demonstrating a role for a vacuolar metalloreductase in Fe-efflux supports the model that iron is stored in the vacuole in the ferric state.  相似文献   

8.
Fre1p is a metalloreductase in the yeast plasma membrane that is essential to uptake of environmental Cu2+ and Fe3+. Fet3p is a multicopper oxidase in this membrane essential for high affinity iron uptake. In the uptake of Fe3+, Fre1p produces Fe2+ that is a substrate for Fet3p; the Fe3+ produced by Fet3p is a ligand for the iron permease, Ftr1p. Deletion of FET3 leads to iron deficiency; this deletion also causes a copper sensitivity not seen in wild type. Deletion of FTR1 leads to copper sensitivity also. Production in the ftr1delta strain of an iron-uptake negative Ftr1p mutant, Ftr1p(RAGLA), suppressed this copper sensitivity. This Ftr1p mutant supported the plasma membrane targeting of active Fet3p that is blocked in the parental ftr1delta strain. A ferroxidase-negative Fet3p did not suppress the copper sensitivity in a fet3delta strain, although it supported the plasma membrane localization of the Fet3p.Ftr1p complex. Thus, loss of membrane-associated Fet3p oxidase activity correlated with copper sensitivity. Furthermore, in vitro Cu1+ was shown to be an excellent substrate for Fet3p. Last, the copper sensitivity of the fet3delta strain was suppressed by co-deletion of FRE1, suggesting that the cytotoxic species was Cu1+. In contrast, deletion of CTR1 or of FET4 did not suppress the copper sensitivity in the fet3delta strain; these genes encode the two major copper transporters in laboratory yeast strains. This result indicated that the apparent cuprous ion toxicity was not due to excess intracellular copper. These biochemical and physiologic results indicate that at least with respect to cuprous and ferrous ions, Fet3p can be considered a metallo-oxidase and appears to play an essential role in both iron and copper homeostasis in yeast. Its functional homologs, e.g. ceruloplasmin and hephaestin, could play a similar role in mammals.  相似文献   

9.
10.
Fet3p is a multicopper oxidase (MCO) that functions together with the iron permease, Ftr1p, to support high-affinity Fe uptake in yeast. Fet3p is a ferroxidase that, like ceruloplasmin and hephaestin, couples the oxidation of 4 equiv of Fe(II) to the reduction of O2 to 2 H2O. The ferrous iron specificity of this subclass of MCO proteins has not been delineated by rigorous structure-function analysis. Here the crystal structure of Fet3p has been used as a template to identify the amino acid residues that confer this substrate specificity and then to quantify the contributions they make to this specific reactivity by thermodynamic and kinetic analyses. In terms of the Marcus theory of outer-sphere electron transfer, we show here that D283, E185, and D409 in Fet3p provide a Fe(II) binding site that actually favors ferric iron; this site thus reduces the reduction potential of the bound Fe(II) in comparison to that of aqueous ferrous iron, providing a thermodynamically more robust driving force for electron transfer. In addition, E185 and D409 constitute parts of the electron-transfer pathway from the bound Fe(II) to the protein's type 1 Cu(II). This electronic matrix coupling relies on H-bonds from the carboxylate OD2 atom of each residue to the NE2 NH group of the two histidine ligands at the type 1 Cu site. These two acidic residues and this H-bond network appear to distinguish a fungal ferroxidase from a fungal laccase since the specificity that Fet3p has for Fe(II) is completely lost in a Fet3pE185A/D409A mutant. Indeed, this double mutant functions kinetically better as a laccase, albeit a relatively inefficient one.  相似文献   

11.
Fet3, the multicopper oxidase of yeast, oxidizes extracellular ferrous iron which is then transported into the cell through the permease Ftr1. A three-dimensional model structure of Fet3 has been derived by homology modeling. Fet3 consists of three cupredoxin domains joined by a trinuclear copper cluster which is connected to the blue copper site located in the third domain. Close to this site, which is the primary electron acceptor from the substrate, residues for a potential iron binding site could be identified. The surface disposition of negatively charged residues suggests that Fet3 can translocate Fe(3+) to the permease Ftr1 through a pathway under electrostatic guidance.  相似文献   

12.
High-affinity iron uptake by yeast cells appears to require the presence of a complex formed on the plasma membrane by the multicopper oxidase Fet3 and the permease Ftr1 which work together to allow iron to enter safely inside the cell. The Pichia pastoris ferroxidase Fet3 has been cloned and it has been found to display high sequence similarity to other yeast multicopper oxidases, including all the predicted ligands for the catalytic copper atoms and for the iron substrate. P. pastoris appears to possess a high-affinity iron uptake system similar to that of S. cerevisiae, as far as regulation of expression is concerned. However, the P. pastoris high-affinity iron uptake system presents a K(m) value for iron almost ten times higher than that of S. cerevisiae, possibly to control iron fluxes over a wider range of concentrations of this metal, in order to avoid toxic iron overloading.  相似文献   

13.
14.
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.  相似文献   

15.
Saccharomyces cerevisiae expresses two proteins that together support high‐affinity Fe‐uptake. These are a multicopper oxidase, Fet3p, with specificity towards Fe2+ and a ferric iron permease, Ftr1p, which supports Fe‐accumulation. Homologues of the genes encoding these two proteins are found in all fungal genomes including those for the pathogens, Candida albicans and Cryptococcus neoformans. At least one of these loci represents a virulence factor for each pathogen suggesting that this complex would be an appropriate pharmacologic target. However, the mechanism by which this protein pair supports Fe‐uptake in any fungal pathogen has not been elucidated. Taking advantage of the robust molecular genetics available in S. cerevisiae, we identify the two of five candidate ferroxidases likely involved in high‐affinity Fe‐uptake in C. albicans, Fet31 and Fet34. Both localize to the yeast plasma membrane and both support Fe‐uptake along with an Ftr1 protein, either from C. albicans or from S. cerevisiae. We express and characterize Fet34, demonstrating that it is functionally homologous to ScFet3p. Using S. cerevisiae as host for the functional expression of the C. albicans Fe‐uptake proteins, we demonstrate that they support a mechanism of Fe‐trafficking that involves channelling of the CaFet34‐generated Fe3+ directly to CaFtr1 for transport into the cytoplasm.  相似文献   

16.
The yeast nucleoporins Nsp1p, Nup49p, and Nup57p form a complex at the nuclear pores which is involved in nucleocytoplasmic transport. To investigate the molecular basis underlying complex formation, recombinant full-length Nup49p and Nup57p and the carboxyl-terminal domain of Nsp1p, which lacks the FXFG repeat domain, were expressed in Escherichia coli. When the three purified proteins were mixed together, they spontaneously associated to form a 150-kDa complex of 1:1:1 stoichiometry. In this trimeric complex, Nup57p fulfills the role of an organizing center, to which Nup49p and Nsp1p individually bind. For this interaction to occur, only two heptad repeat regions of the Nsp1p carboxyl-terminal domain are required, each region being about 50 amino acids in length. Finally, the reconstituted complex has the capability to bind to full-length Nic96p but not to mutant forms which also do not interact in vivo. When added to permeabilized yeast cells, the complex associates with the nuclear envelope and the nuclear pores. We conclude that Nsp1p, Nup49p, and Nup57p can reconstitute a complex in vitro which is competent for further assembly with other components of nuclear pores.  相似文献   

17.
Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron   总被引:2,自引:0,他引:2  
  相似文献   

18.
Iron is an essential nutrient for nearly all organisms, but iron overdose is toxic. The human commensal‐pathogenic fungus Candida albicans traverses host niches with markedly different iron availability. During systemic infection, C. albicans must activate the high‐affinity iron permease Ftr1 to acquire iron sequestered by the host's iron‐withholding defense and suppresses iron uptake while residing in the iron‐rich gut to avoid toxicity. Ftr1 associates with a ferroxidase to form an iron transporter. C. albicans contains four permeases and five ferroxidase homologs, suggesting 20 possible subunit combinations. Here, we investigated the iron‐dependent expression, cellular localization and interacting partners of all permeases and ferroxidases and the significance of each subunit for gastrointestinal colonization and systemic infection in mice. We uncovered three distinct patterns of iron‐dependent expression and highly flexible ferroxidase‐permease partnerships, which underlie a dynamic iron transport system that can be deftly tuned according to iron availability. We found functional differentiation as well as redundancy among the ferroxidases and permeases during both gastrointestinal colonization and bloodstream infection. We propose that C. albicans possesses a sophisticated iron acquisition and utilization system befitting its commensal‐pathogenic lifestyle. Our findings reveal new possibilities for medical intervention of C. albicans infection.  相似文献   

19.
FgFtr1 and FgFtr2 are putative iron permeases, and FgFet1 and FgFet2 are putative ferroxidases of Fusarium graminearum. They have high homologies with iron permease ScFtr1 and ferroxidase ScFet3 of Saccharomyces cerevisiae at the amino acid level. The genes encoding iron permease and ferroxidase were localized to the same chromosome in the manner of FgFtr1/FgFet1 and FgFtr2/FgFet2. The GFP (green fluorescent protein)-fused versions of FgFtr1 and FgFtr2 showed normal functions when compared with FgFtr1 and FgFtr2 in an S. cerevisiae system, and the cellular localizations of FgFtr1 and FgFtr2 in S. cerevisiae depended on the expression of their putative ferroxidase partners FgFet1 and FgFet2 respectively. Although FgFtr1 was found on the plasma membrane when FgFet1 and FgFtr1 were co-transformed in S. cerevisiae, most of the FgFtr1 was found in the endoplasmic reticulum compartment when co-expressed with FgFet2. Furthermore, FgFtr2 was found on the vacuolar membrane when FgFet2 was co-expressed. From the two-hybrid analysis, we confirmed the interaction of FgFtr1 and FgFet1, and the same result was found between FgFtr2 and FgFet2. Iron-uptake activity also depended on the existence of the respective partner. Finally, the FgFtr1 and FgFtr2 were found on the plasma and vacuolar membrane respectively, in F. graminearum. Taken together, these results strongly suggest that FgFtr1 and FgFtr2 from F. graminearum encode the iron permeases of the plasma membrane and vacuolar membrane respectively, and require their specific ferroxidases to carry out normal function. Furthermore, the present study suggests that the reductive iron-uptake system is conserved from yeast to filamentous fungi.  相似文献   

20.
Copper is an essential trace metal whose biological utility is derived from its ability to cycle between oxidized Cu(II) and reduced Cu(I). Ctr1 is a high affinity plasma membrane copper permease, conserved from yeast to humans, that mediates the physiological uptake of Cu(I) from the extracellular environment. In the baker's yeast Saccharomyces cerevisiae, extracellular Cu(II) is reduced to Cu(I) via the action of the cell surface metalloreductase Fre1, similar to the human gp91(phox) subunit of the NADPH oxidase complex, which utilizes heme and flavins to catalyze electron transfer. The S. cerevisiae Ctr2 protein is structurally similar to Ctr1, localizes to the vacuole membrane, and mobilizes vacuolar copper stores to the cytosol via a mechanism that is not well understood. Here we show that Ctr2-1, a mutant form of Ctr2 that mislocalizes to the plasma membrane, requires the Fre1 plasma membrane metalloreductase for Cu(I) import. The conserved methionine residues that are essential for Ctr1 function at the plasma membrane are also essential for Ctr2-1-mediated Cu(I) uptake. We demonstrate that Fre6, a member of the yeast Fre1 metalloreductase protein family, resides on the vacuole membrane and functions in Ctr2-mediated vacuolar copper export, and cells lacking Fre6 phenocopy the Cu-deficient growth defect of ctr2Delta cells. Furthermore, both CTR2 and FRE6 mRNA levels are regulated by iron availability. Taken together these studies suggest that copper movement across intracellular membranes is mechanistically similar to that at the plasma membrane. This work provides a model for communication between the extracellular Cu(I) uptake and the intracellular Cu(I) mobilization machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号