首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Analysis of the mitochondrial transmembrane potential (m) with the help of the JC-1 fluorochrome (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolcarbocyanine iodide) during mesophyll leaf senescence was performed in order to determine whether a reduction of m takes place during mesophyll senescence and whether plant mitochondria, like mammalian ones, might be involved in the induction of programmed cell death. Fluorescence analysis of mesophyll protoplasts of Pisum sativum in a confocal microscope, fluorescent spectra analysis and time dependence of fluorescence intensity of monomers and of J-aggregates revealed that JC-1 is incorporated and accumulated specifically in plant mitochondria. Analysis of m during mesophyll protoplast senescence revealed that two subpopulations of mitochondria which differ in m exist in all analyzed stages of leaf senescence. The first subpopulation contains mitochondria with red fluorescence of J-aggregates due to an unperturbed high m. The second subpopulation comprises mitochondria with green fluorescence of monomers due to a low m, proving total depolarization of mitochondrial membranes. Fluorescence analysis demonstrated that even in the latest analyzed stages of leaf senescence, mitochondria with a high m still exist. Fluorometric measurements revealed that the fluorescence intensity of J-aggregates decreases with the age of plants, which indicates that a reduction of m during the mesophyll senescence process takes place; however, it does not take place within the whole population of mitochondria of the same protoplast. The reason of this can be due to a dramatic reorganization of mitochondria in mesophyll cells and the appearance of large mitochondria with local heterogeneity of m in the oldest analyzed stages. All mitochondria in every stage of senescence maintained their membrane organization even when their size, distribution, and spatial organization in protoplasts changed dramatically. We stated that the reduction of m does not directly induce programmed cell death in mesophyll cells, as opposed to animal apoptosis.Correspondence and reprints: Department of Plant Anatomy and Cytology, Institute of Experimental Biology of Plants, Warsaw University, Miecznikowa 1, 02-096 Warszawa, Poland.  相似文献   

2.
Summary Bean plants (Kora cv) were grown in potted soil artificially salinized by adding NaCl and CaCl2 to the irrigation water to obtain an electrical conductivity of the soil saturation extract (ECe) thirty days after emergence of 0.1, 0.3, 0.5 and 0.7 S/m at 25°C and a sodium adsorption ratio (SAR) of 4 (mmol/l)2. Thereafter, plants were irrigated when soil water matric potential (M) was in the range of –20 to –30 kPa (wet treatment) and when M was in the range of –40 to –60 kPa (dry treatment).Transpiration rates (Tr) and leaf extension rates (LER) per plant or per unit of leaf area were decreased by increasing soil salinity and by decreasing soil moisture. However, a given decrement of M produced a considerable larger decrement in Tr of LER than an equivalent decrement of soil water osmotic potential (0). Absolute yields of green pods under wet treatments were from twice to one and a half time as large under the wet than under the dry treatment at equivalent values of 0. Relative yields were reduced by 25% when ECe were about 0.5 S/m and 0.7 S/m in the dry and wet treatment respectively. Salt tolerance data of crops may not have a quantitative interest when soil irrigation regimes under which they were obtained are not specified.  相似文献   

3.
Summary Lupins (Lupinus angustifolius and L. cosentinii) growing in 321 containers in a glasshouse were exposed to drought by withholding water. Leaf water potential (1), and leaf osmotic potential (s) were measured daily as soil water became depleted. Leaf water relations were further assessed by a pressure-volume technique and by measuring s and relative water content of leaves after rehydration. Analysis by pressure-volume or cryoscopic techniques showed that leaf osmotic potential at saturation (s100) decreased from -0.6 MPa in well watered to -0.9 MPa in severely droughted leaves, and leaf water potential at zero turgor (zt) decreased from about -0.7 to -1.1 MPa in well watered and droughted plants, respectively. Relative water content at zero turgor (RWCzt) was high (88%) and tended to be decreased by drought. The ratio of turgid leaf weight to dry weight was not influenced by drought and was high at about 8.0. The bulk elastic modulus () was approximately halved by drought when related to leaf turgor potential (p) and probably mediated turgor maintenance during drought. The latter was found to be negatively influenced by rate of drought. Supplying the plants with high levels of K salts did not promote adjustment or turgor maintenance.  相似文献   

4.
Summary The current-voltage (I–V) relations of the rheogenic Na-sugar cotransport mechanism at the apical membrane ofNecturus small intestine were determined from the relations between the electrical potential difference across the apical membrane, mc , and that across the entire epithelium, ms , when the latter was varied over the range ±200 mV, (i) under steady conditions in the presence of galactose and (ii) after the current across the apical membrane carried by the cotransporter,I SNa m , is blocked by the addition of phloridzin to the mucosal solution.I SNa m was found to be strongly dependent upon mc over the range –50 mV < mc <E SNa m whereE SNa m is the zero current or reversal potential. Over the range of values of mc encountered under physiological conditions the cotransporter may be modeled as a conductance in series with an electromotive force so thatI SNa m =g SNa m (E SNa m mc ) whereg SNa m is the contribution of this mechanism to the conductance of the apical membrane and is near constant. In several instancesI SNa m saturated at large hyperpolarizing or depolarizing values of mc .The values ofE SNa m determined in the presence of 1, 5, and 15mm galactose strongly suggest that if the Na-galactose cotransporters are kinetically homogeneous, the stoichiometry of this coupled process is unity.Finally, the shapes of the observedI–V relations are consistent with the predictions of a simple kinetic model which conforms with current notions regarding the mechanico-kinetic properties of this cotransport process.  相似文献   

5.
Turgor (p) and osmotic potential (s) in epidermal and mesophyll cells, in-situ xylem water potential (-xyl) and gas exchange were measured during changes of air humidity and light in leaves ofTradescantia virginiana L., Turgor of single cells was determined using the pressure probe. Sap of individual cells was collected with the probe for measuring the freezing-point depression in a nanoliter osmometer. Turgor pressure was by 0.2 to 0.4 MPa larger in mesophyll cells than in epidermal cells. A water-potential gradient, which was dependent on the rate of transpiration, was found between epidermis and mesophyll and between tip and base of the test leaf. Step changes of humidity or light resulted in changes of epidermal and mesophyll turgor (p-epi, p-mes) and could be correlated with the transpiration rate. Osmotic potential was not affected by a step change of humidity or light. For the humidity-step experiments, stomatal conductance (g) increased with increasing epidermal turgor.g/p-epi appeared to be constant over a wide range of epidermal turgor pressures. In light-step experiments this type of response was not found and stomatal conductance could increase while epidermal turgor decreased.Symbols E transpiration - g leaf conductance - w leaf/air vapour concentration difference - -epi water potential of epidermal cells - -mes water potential of mesophyll cells - -xyl water potential of xylem - p-epi turgor pressure of epidermal cells - p-mes turgor pressure of mesophyll cells - s-epi osmotic potential of epidermal cells - s-mes osmotic potential of mesophyll cells  相似文献   

6.
A. N. Rai  P. Lindblad  B. Bergman 《Planta》1986,169(3):379-381
Using the ammonium analogue 14CH3NH 3 + , ammonium transport was studied in the cyanobiont cells freshly isolated from the root nodules of Cycas revoluta. An L-methionine-dl-sulphoximine (MSX)-insensitive ammonium-transport system, which was dependent on membrane potential (), was found in the cyanobiont. However, the cyanobiont was incapable of metabolizing exogenous 14CH3NH 3 + or NH 4 + because of the absence of another ammonium-transport system responsible for the uptake of ammonium for assimilation via glutamine synthetase (EC 6.3.1.2). Such a modification seems to be the result of symbiosis because the free-living cultured isolate, Anabaena cycadeae, has been shown to possess both the ammonium-transport systems.Abbreviations and symbol ATS/ATSs ammonium transport system/systems - Chl chlorophyll - GS glutamine synthetase - MSX L-methionine-dl-sulphoximine - membrane potential  相似文献   

7.
Relative water content (RWC), leaf water potential (w) and osmotic potential (s), contents of chlorophyll (Chl) a, Chl b, soluble sugars, and seed quality (gum content) were used to evaluate the role of phosphorus in alleviation of the deleterious effect of water deficit in clusterbean (Cyamopsis tetragonoloba L. Taub). Under water stress, w, s, and Chl and gum contents decreased and soluble sugar contents increased. Phosphorus application increased Chl and sugar contents in control plants and ameliorated negative effects of water stress.  相似文献   

8.
Pervez  H.  Ashraf  M.  Makhdum  M.I. 《Photosynthetica》2004,42(2):251-255
The effects of potassium nutrition [0, 6.25, 12.50, 25.00 g(K) m–2 of K2SO4 or KCl] on gas exchange characteristics and water relations in four cultivars (CIM-448, CIM-1100, Karishma, S-12) of cotton were assessed under an arid environment. Net photosynthetic rate (P N) and transpiration rate (E) increased with increased K supply. The leaf pressure potential (p) increased significantly by the addition of 25.00 g(K) m–2 compared to zero K level. The water use efficiency (P N/E) was improved by 24.6 % under the highest K dose compared to zero K. There were positive correlations (0.99**, 0.98**, 0.95**, 0.97**) between K-doses and P N, E, p, and P N/E, respectively.  相似文献   

9.
of whole cells of Methanobacterium thermoautotrophicum was estimated under varying conditions using an electrode sensitive to the lipophilic cation tetraphenylphosphonium chloride (TPP+). Since was found to be extremely sensitive to air, a special reaction vessel was developed to maintain strict anaerobiosis. The cells took up TPP+ under energization by H2 and CO2 thus allowing to calculate the from the distribution of TPP+ inside and outside the cells. The unspecific uptake of deenergized cells was around 10% of the total uptake of energized cells. TPP+ itself slightly diminished the , but had no effect on the formation of methane. Typical values of were in the range of-150 to-200 mV. showed a quantitative dependence on both the electron donor H2 and the electron acceptor CO2. NaCl stimulated the extent of the , whereas KCl slightly diminished it. Valinomycin resulted in a linear decline of , whereas the methane production rate was only slightly affected. In contrast, monensin reduced both methanogenesis and .Abbreviations pmf proton motive force - membrane potential - TPP+ tetraphenylphosphonium (chloride salt) - TPMP+ triphenylmethylphosphonium (chloride salt, if not otherwise indicated) - d.w. dry weight - t d doubling time - PVC polyvinylchloride  相似文献   

10.
The objective of this study was to determine how adjustment in stomatal conductance (g s) and turgor loss point (tlp) between riparian (wet) and neighboring slope (dry) populations of Acer grandidentum Nutt. was associated with the susceptibility of root versus stem xylem to embolism. Over two summers of study (1993–1994), the slope site had substantially lower xylem pressures (px) and g s than the riparian site, particularly during the drought year of 1994. The tlp was also lower at the slope (-2.9±0.1 MPa; all errors 95% confidence limits) than at riparian sites (-1.9±0.2 MPa); but it did not drop in response to the 1994 drought. Stem xylem did not differ in vulnerability to embolism between sites. Although slope-site stems lost a greater percentage of hydraulic conductance to embolism than riparian stems during the 1994 drought (46±11% versus 27±3%), they still maintained a safety margin of at least 1.7 MPa between midday px and the critical pressure triggering catastrophic xylem embolism (pxCT). Root xylem was more susceptible to embolism than stem xylem, and there were significant differences between sites: riparian roots were completely cavitated at -1.75 MPa, compared with -2.75 MPa for slope roots. Vulnerability to embolism was related to pore sizes in intervessel pit membranes and bore no simple relationship to vessel diameter. Safety margins from pxCT averaged less than 0.6 MPa in roots at both the riparian and slope sites. Minimal safety margins at the slope site during the drought of 1994 may have led to the almost complete closure of stomata (g s=9±2 versus 79±15 mmol m-2 s-1 at riparian site) and made any further osmotic adjustment of tlp non-adaptive. Embolism in roots was at least partially reversed after fall rains. Although catastrophic embolism in roots may limit the minimum for gas exchange, partial (and reversible) root embolism may be adaptive in limiting water use as soil water is exhausted.  相似文献   

11.
Studies on animal material have revealed that changes in the mitochondrial permeability transition pore (PTP), which cause a reduction in the mitochondrial transmembrane potential (m) followed by release of cytochrome c, belong to the earliest manifestations of some types of apoptosis. We have attempted to monitor the m of mitochondria during programmed cell death (PCD) of the secretory tapetum using JC-1, a fluorochrome dye that detects mitochondrial membrane potential and to relate changes in this potential to mitochondrial ultrastructure. Analysis of tapetal cells isolated from Ornithogalum virens anthers revealed that the m of mitochondria in the tapetal cells alters during development; the change, however, is not uniform in the mitochondrial population within a single tapetal cell. In young tapetal cells, at the tetrad stage, we detected only the red fluorescence of JC-1 aggregates in all tapetal mitochondria, which indicates highly negative m. In an advanced stage of PCD at the late microspore stage, in each tapetal cell we detected both mitochondria with red (as formerly) and mitochondria with green fluorescence. The green fluorescence of JC-1 monomers indicates mitochondria with depolarised membranes. These changes in m are related to observed changes in mitochondria ultrastructure. This is the first documentation of intracellular heterogeneity of m during anther tapetum development. Alteration in m suggests a relationship between mitochondrial function and PCD processes in tapetal cells.  相似文献   

12.
M. E. Westgate  J. S. Boyer 《Planta》1985,164(4):540-549
The expansion growth of plant organs is inhibited at low water potentials ( w), but the inhibition has not been compared in different organs of the same plant. Therefore, we determined elongation rates of the roots, stems, leaves, and styles (silks) of maize (Zea mays L.) as soil water was depleted. The w was measured in the region of cell expansion of each organ. The complicating effects of transpiration were avoided by making measurements at the end of the dark period when the air had been saturated with water vapor for 10 h and transpiration was less than 1% of the rate in the light. Growth was inhibited as the w in the region of cell expansion decreased in each organ. The w required to stop growth was-0.50,-0.75, and-1.00 MPa, in this order, in the stem, silks, and leaves. However, the roots grew at these w and ceased only when w was lower than-1.4 MPa. The osmotic potential decreased in each region of cell expansion and, in leaves, roots and stems, the decrease was sufficient to maintain turgor fully. In the silks, the decrease was less and turgor fell. In the mature tissue, the w of the stem, leaves and roots was similar to that of the soil when adequate water was supplied. This indicated that an equilibrium existed between these tissues, the vascular system, and the soil. At the same time, the w was lower in the expanding regions than in the mature tissues, indicating that there was a w disequilibrium between the growing tissue and the vascular system. The disequilibrium was interpreted as a w gradient for supplying water to the enlarging cells. When water was withheld, this gradient disappeared in the leaf because w decreased more in the xylem than in the soil, indicating that a high flow resistance had developed in the xylem. In the roots, the gradient did not decrease because vascular w changed about the same amount as the soil w. Therefore, the gradient in w favored water uptake by roots but not leaves at low w. The data show that expansion growth responds to low w differently in different growing regions of the plant. Because growth depends on the maintenance of turgor for extending the cell walls and the presence of w gradients for supplying water to the expanding cells, several factors could have been responsible for these differences. The decrease of turgor in the silks and the loss of the w gradient in the leaves probably contributed to the high sensitivity of these organs. In the leaves, the gradient loss was so complete that it would have prevented growth regardless of other changes. In the roots, the maintenance of turgor and w gradients probably allowed growth to continue. This difference in turgor and gradient maintenance could contribute to the increase in root/shoot ratios generally observed in water-limited conditions.Symbols s osmotic potential - w water potential  相似文献   

13.
Phloem-sap composition was studied in plants of Ricinus communis L. grown on a waterculture medium. The sap possessed a relatively high K+:Na+ ratio and low levels of Ca2+ and free H+. Sucrose and K+ (together with its associated anions) accounted for 75% of the phloem-sap solute potential (s). In plants kept in continuous darkness, a decrease in phloem-sap sucrose levels over 24h was accompanied by an increase in K+ levels. Measurements of phloem-sap s and xylem water potential () indicated that this resulted in a partial maintenance of phloem turgor pressure p. In darkness there was also a marked decrease in the malate content of the leaf tissue, and it is possible that organic carbon from this source was mobilized for export in the phloem. The results support the concept of the phloem sap as a symplastic phase. We interpret the increase in K+ levels in the phloem in darkness as an osmoregulatory response to conditions of restricted solute availability. This reponse can be explained on the basis of the sucrose-H+ co-transport mechanism of phloem loading.Abbreviations water potential - s solute potential - p pressure potential  相似文献   

14.
K. Zambou  C. G. Spyropoulos 《Planta》1989,179(3):403-408
The uptake of D-mannose was studied in detached cotyledons of germinated fenugreek (Trigonella foenum-graecum L.) seeds. Uptake kinetics indicate the involvement of two components, a saturable component operating at low concentrations and a diffusion-like one at high concentrations. Treatment of cotyledons with carbonyl-cyanide-m-chlorophenylhydrazone and p-chloromercuribenzenesulfonic acid reduced D-mannose-uptake rates by about 35% and 35–65%, respectively. No difference in the uptake rates was observed in the presence of D-galactose or 3-O-methylglucose. D-Mannose uptake was not very much affected by pH. The optimum pH for its uptake was 6.5 while at pH 8.5 its uptake was reduced by 22%. D-Mannose addition to fenugreek cotyledons did not induce alkalinization of the medium. Furthermore, low turgor, which enhances proton/sugar cotransport, decreased D-mannose uptake while the uptake of 3-O-methylglucose was increased. The rate of D-mannose uptake by fenugreek cotyledons depended on the hours of imbibition. These changes of uptake were not followed by analogous changes in the turgor pressure (p) of fenugreek cotyledons, which remained fairly constant. Results indicate that D-mannose is partially taken up by a carrier which has high specificity for D-mannose, but not by a H+-sugar cotransport system. It is further concluded that the carrier plays an important role in switching on and off the uptake capacity of fenugreek cotyledons during seedling development.Abbreviations and symbols CCCP carbonylcyanide-m-chlorophenylhydrazone - DTT dithiothreitol - 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzensulfonic acid - water potential - s osmotic potential - p turgor pressure  相似文献   

15.
Summary Leukocytes from patients with early cancer exhibit leukocyte adherence inhibition (LAI) when incubated with extracts of cancer of the same organ and histogenesis, whereas leukocytes from patients with advanced cancer seldom do. To understand the reason for this refractory state, tumor antigen-induced LAI and transmembrane signalling were measured in the same leukocytes. Transmembrane signalling was measured by changes in membrane potential () by the [3H]tetraphenylphosphonium equilibration technique. When leukocytes from patients with early breast cancer were incubated with extracts of breast cancer and malignant melanoma they showed changes consisting of depolarization and hyperpolarization beginning within 0.5 min after addition of the breast cancer extract and finishing 15 min later. Moreover, they showed no changes when incubated with extracts of normal breast tissue. Leukocytes from subjects without cancer seldom showed changes. In criss-cross experiments, leukocytes from patients with melanoma only exhibited changes when incubated with the melanoma extract. There was a strong correlation between cancer extract-induced change and LAI. The change was triggered by leukotriene-like mediators from antibody-dependent monocytes. Authentic leukotrienes triggered changes in all subpopulation of leukocytes. Leukocytes from patients with advanced breast cancer when incubated with breast cancer extract did not transmit a signal or show LAI. Brief elevation of intracellular cyclic AMP restored both change and LAI induced by breast cancer extracts, indicating that reactive leukocytes are present but in a refractory state. We conclude that leukocytes from patients with advanced cancer do not react in LAI because tumor antigen does not trigger a transmembrane signal to initiate the cascade of biochemical reactions and physiological changes for LAI.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - cyclic AMP cyclic adenosine monophosphate - ETYA eicosatetraynoic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine ethansulfonate - LAI leukocyte adherence inhibition - NAI nonadherence index - OSN organ-specific cancer neoantigen - PBL peripheral blood leukocytes - PGE2 prostaglandin E2 - [3H]TPP+ [phenyl3H]tetraphenylphosphonium bromide - transmembrane potential  相似文献   

16.
We studied the water relations of 6 shrub and 3 tree species typical of the mediterranean climate region of central Spain to identify differential responses to water stress between and within species, and to determine if free proline concentration in leaves could be used as a water stress indicator. Predawn and midday water potentials (w) on a seasonal basis, relative water content (RWC), leaf mass per area, foliar nitrogen and free proline concentrations were measured. The lowest water potentials were observed at the end of the summer, with recovery to higher water potentials in the fall and winter seasons. Species differed regarding the annual w fluctuation. Thymus zygis, Halimium viscosum, Genista hirsuta and Juniperus oxycedrus exhibited the most negative midday and predawn w (both less than -6 MPa) with a large magnitude of response to changing conditions in soil moisture of the upper horizon of the soil. Lavandula pedunculata and Cistus ladanifer showed a moderate response. Quercus rotundifolia, Quercus faginea and Retama sphaerocarpa showed a modest response. The w of different size individuals of Quercus rotundifolia and Cistus ladanifer were compared. The annual w fluctuation was greater in small individuals as compared to large individuals. In every species, there was an increase in proline concentration of bulk leaf tissues when predawn w dropped below -5 MPa. Small plants of Cistus ladanifer reached lower water potentials and also higher concentration of proline than bigger plants. Proline could possibly be used as a drought stress indicator in every species except Q. rotundifolia. It is suggested that in addition to water stress avoidance due to deep root systems, some mechanisms of water stress tolerance may operate among shrub and tree species of central Spain.  相似文献   

17.
Diurnal variation in leaf stomatal conductance (g s) of three xerophilous species (Buddleia cordata, Senecio praecox and Dodonaea viscosa) was measured over a 10-month period during the dry and wet seasons in a shrubland that is developing in a lava substratum in Mexico. Averaged stomatal conductances were 147 and 60.2 (B. cordata), 145 and 24.8 (D. viscosa) and 142.8 and 14.1 mmol m–2 s–1 (S. praecox) during the wet and dry season respectively. Leaf water potential () varied in a range of –0.6 to –1.2 (S. praecox), –0.6 to –1.8 (B. cordata) and –0.9 to –3.4 MPa (D. viscosa) during the same measurement periods. Stomata were more sensitive to changes in irradiance, air temperature and leaf–air vapour pressure difference in the rainy season than the dry season. Although stomatal responses to were difficult to distinguish in any season (dry or rainy), data for the entire period of measurement showed a positive correlation, stomata tending to open as increased, but there is strong evidence of isohydric behaviour in S. praecox and B. cordata. A multiplicative model relating g s to environmental variables and to accounted for 79%–83% of the variation of g s in three sites (pooled data); however, the performance of the model was poorer (60%–76%) for individual species from other sites not included in the pooled data.  相似文献   

18.
The mitochondrial matrix can be specifically labeled by loading cells with calcein and simultaneous quenching of the non-mitochondrial calcein fluorescence with cobalt (Co2+). Positive staining of mitochondria thus requires that the inner mitochondrial membrane functions as a barrier separating calcein (within the matrix) from Co2+ (outside of the matrix). Upon induction of apoptosis, such calcein/Co2+-labeled cells, demonstrate a decrease in the overall calcein fluorescence resulting from inner mitochondrial membrane permeabilization. This decrease can be quantified by cytofluorometry and can be dissociated from other apoptosis-associated mitochondrial perturbations such as the loss of the mitochondrial transmembrane potential ( m ), the local overproduction of reactive oxygen species, and the mitochondrial release of cytochrome c. In some paradigms of apoptosis the loss of calcein/Co2+ (CC) staining can be dissociated from the m loss, both of which may occur in a caspase-dependent or caspase-independent fashion, depending on the apoptosis inducer. Importantly, inner membrane permeabilization to CC may occur without a permanent m dissipation in apoptosis, suggesting that transient permeabilization events could participate at the apoptotic cascade. Altogether, our data demonstrate that inner mitochondrial membrane permeabilization constitutes an early event in the apoptotic cascade.  相似文献   

19.
Seasonal regulation of leaf water potential (L) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum L were small in all of the study species. Water use and water status were regulated by a combination of plant physiological and architectural traits. Despite a nearly 3-fold increase in mean D between the wet and dry season, a sharp decline in stomatal conductance with increasing D constrained seasonal variation in minimum L by limiting transpiration per unit leaf area (E). The leaf surface area per unit of sapwood area (LA/SA), a plant architectural index of potential constraints on water supply in relation to transpirational demand, was about 1.5–8 times greater in the wet season compared to the dry season for most of the species. The changes in LA/SA from the wet to the dry season resulted from a reduction in total leaf surface area per plant, which maintained or increased total leaf-specific hydraulic conductance (Gt) during the dry season. The isohydric behavior of Cerrado tree species with respect to minimum L throughout the year thus was the result of strong stomatal control of evaporative losses, a decrease in total leaf surface area per tree during the dry season, an increase in total leaf-specific hydraulic conductance, and a tight coordination between gas and liquid phase conductance. In contrast with the seasonal isohydric behavior of minimum L, predawn L in all species was substantially lower during the dry season compared to the wet season. During the dry season, predawn L was more negative than bulk soil estimated by extrapolating plots of E versus L to E=0. Predawn disequilibrium between plant and soil was attributable largely to nocturnal transpiration, which ranged from 15 to 22% of the daily total. High nocturnal water loss may also have prevented internal water storage compartments from being completely refilled at night before the onset of transpiration early in the day.  相似文献   

20.
The recently described increase in DNA strand breaks of cultured human diploid fibroblasts after intermittent exposure to extremely-low-frequency electromagnetic fields (ELF-EMF) of more than about 70 µT ELF-EMF is difficult to explain by a direct induction of covalent bond disruption. Therefore the hypothesis has been tested that ELF-EMF-induced DNA strand breaks might be mediated by cellular processes that cause alteration of the intracellular concentration of free calcium ([Ca2+]i) and/or the membrane potential (m). [Ca2+]i was determined by the ratiometric fura-2 technique. Changes in m were assessed by using the potential-dependent lipophilic cationic probe JC-1. Human fibroblasts were exposed to intermittent ELF-EMF (50 Hz, 1000 µT). Although exposure of fiboblasts to ELF-EMF resulted in a highly significant increase in DNA strand breaks as determined by the comet assay, no effect on JC-1 fluorescence emission or on [Ca2+]i has been observed when comparing exposed with sham-exposed cells. Therefore, it is suggested that ELF-EMF-induced DNA strand breaks are unlikely to be caused by intracellular changes that affect [Ca2+]i and/or m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号